OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 17 — Jun. 10, 2004
  • pp: 3382–3390

Proposal and testing of dual-beam dynamic light scattering for two-particle microrheology

Xin-Liang Qiu, Penger Tong, and Bruce J. Ackerson  »View Author Affiliations

Applied Optics, Vol. 43, Issue 17, pp. 3382-3390 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (149 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A dual-beam dynamic light-scattering arrangement is devised to measure the time-dependent mean squared relative displacement of a pair of tracer particles with a small separation of micrometers. The technique is tested by the measurement of the relative diffusion of polymer latex spheres suspended in a simple viscous fluid. The experiment verifies the theory and demonstrates its applications. The dual-beam dynamic light-scattering technique, when combined with an optical microscope, provides a powerful tool for the study of two-particle microrheology of soft materials. The advantages of the new technique are its high statistical accuracy, faster temporal response, and ease of use.

© 2004 Optical Society of America

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(290.5850) Scattering : Scattering, particles
(300.6480) Spectroscopy : Spectroscopy, speckle

Original Manuscript: July 15, 2003
Revised Manuscript: February 26, 2004
Published: June 10, 2004

Xin-Liang Qiu, Penger Tong, and Bruce J. Ackerson, "Proposal and testing of dual-beam dynamic light scattering for two-particle microrheology," Appl. Opt. 43, 3382-3390 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).
  2. T. G. Mason, D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74, 1250–1253 (1995). [CrossRef] [PubMed]
  3. T. G. Mason, K. Ganesan, J. H. van Zanten, D. Wirtz, S. C. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79, 3282–3285 (1997). [CrossRef]
  4. A. J. Levine, T. C. Lubensky, “One- and two-particle microrheology,” Phys. Rev. Lett. 85, 1774–1777 (2000). [CrossRef] [PubMed]
  5. A. J. Levine, T. C. Lubensky, “Two-point microrheology and the electrostatic analogy,” Phys. Rev. E 65, 011501 (2001). [CrossRef]
  6. T. Gisler, D. A. Weitz, “Tracer microrheology in complex fluids,” Curr. Opin. Colloid Interface Sci. 3, 586–592 (1998). [CrossRef]
  7. F. C. MacKintosh, C. F. Schmidt, “Microrheology,” Curr. Opin. Colloid Interface Sci. 4, 300–307 (1999). [CrossRef]
  8. M. L. Gardel, M. T. Valentine, D. A. Weitz, “Microrheology,” in Microscale Diagnostic Techniques, K. Breuer, ed. (Springer-Verlag, New York, to be published).
  9. Y. Tseng, T. P. Kole, S.-H. J. Lee, D. Wirtz, “Local dynamics and viscoelastic properties of cell biological systems,” Curr. Opin. Colloid Interface Sci. 7, 210–217 (2002). [CrossRef]
  10. J.-C. Meiners, S. R. Quake, “Direct measurement of hydrodynamic cross correlations between two particles in an external potential,” Phys. Rev. Lett. 82, 2211–2214 (1999). [CrossRef]
  11. Y. Tseng, T. P. Kole, D. Wirtz, “Micromechanical mapping of live cells by multiple-particle-tracking microrheology,” Biophys. J. 83, 3162–3176 (2002). [CrossRef] [PubMed]
  12. X. Ye, P. Tong, L. J. Fetters, “Transport of probe particles in semidilute polymer solutions,” Macromolecules 31, 5785–5793 (1998). [CrossRef]
  13. J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85, 888–891 (2000). [CrossRef] [PubMed]
  14. J. C. Crocker, D. G. Grier, “Methods of digital video microscopy,” J. Colloid Interface Sci. 179, 298–310 (1996). [CrossRef]
  15. H. Z. Cummins, H. L. Swinney, “Light beating spectroscopy,” in Progress in Optics, Vol. VIII, E. Wolf, ed. (Elsevier North-Holland, Amsterdam, 1970). [CrossRef]
  16. E. R. Dufresne, T. M. Squires, M. P. Brenner, D. G. Grier, “Hydrodynamic coupling of two Brownian spheres to a planar surface,” Phys. Rev. Lett. 85, 3317–3320 (2000). [CrossRef] [PubMed]
  17. D. L. Ermak, J. A. Mecammon, “Brownian dynamics with hydrodynamic interactions,” J. Chem. Phys. 69, 1352–1360 (1978). [CrossRef]
  18. G. K. Batchelor, “Brownian diffusion of particles with hydrodynamic interaction,” J. Fluid Mech. 74, 1–29 (1976). [CrossRef]
  19. J. C. Crocker, “Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal particles,” J. Chem. Phys. 106, 2837–2840 (1997). [CrossRef]
  20. T. Narayanan, C. Cheung, P. Tong, W. I. Goldburg, X.-L. Wu, “Measurement of the velocity difference by photon correlation spectroscopy: an improved scheme,” Appl. Opt. 36, 7639–7644 (1997). [CrossRef]
  21. Y.-X. Du, B. J. Ackerson, P. Tong, “Velocity difference measurement with a fiber-optic coupler,” J. Opt. Soc. Am. A 15, 2433–2439 (1998). [CrossRef]
  22. P. D. Kaplan, V. Trappe, D. A. Weitz, “Light-scattering microscope,” Appl. Opt. 38, 4151–4157 (1999). [CrossRef]
  23. E. J. Hinch, L. C. Nitsche, “Non-linear drift interactions between fluctuating colloidal particles: oscillatory and stochastic motions,” J. Fluid Mech. 256, 343–401 (1993). [CrossRef]
  24. M. T. Valentine, A. K. Popp, D. A. Weitz, P. D. Kaplan, “Microscope-based static light-scattering instrument,” Opt. Lett. 26, 890–892 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited