OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 17 — Jun. 10, 2004
  • pp: 3401–3407

Continuous, noninvasive monitoring of total hemoglobin concentration by an optoacoustic technique

Rinat O. Esenaliev, Yuriy Y. Petrov, Olaf Hartrumpf, Donald J. Deyo, and Donald S. Prough  »View Author Affiliations


Applied Optics, Vol. 43, Issue 17, pp. 3401-3407 (2004)
http://dx.doi.org/10.1364/AO.43.003401


View Full Text Article

Enhanced HTML    Acrobat PDF (124 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Measurement of total hemoglobin concentration [Hgb] is a blood test that is widely used to evaluate outpatients, hospital inpatients, and surgical patients, especially those undergoing surgery associated with extensive blood loss, rapid fluid administration, and transfusion of packed red blood cells. Current techniques for measurement of [Hgb] are invasive (requiring blood sampling) and cannot provide real-time, continuous monitoring. We propose to use an optoacoustic technique for noninvasive and continuous monitoring of [Hgb]. The high resolution of the optoacoustic technique may provide accurate measurement of [Hgb] by detection and analysis of optoacoustic signals induced by short optical pulses in blood circulating in arteries or veins. We designed, built, and tested in vitro (in both tissue phantoms and in preliminary in vivo experiments) a portable optoacoustic system for the monitoring of [Hgb] in the radial artery. The system includes a nanosecond laser operating in the near-infrared spectral range and a sensitive optoacoustic probe designed to irradiate the radial artery through the skin and detect optoacoustic signals induced in blood. Results of our studies demonstrated that (1) the slope of optoacoustic waves induced in blood in the transmission mode is linearly dependent on [Hgb] in the range from 6.2 to 12.4 g/dl, (2) optoacoustic signals can be detected despite optical attenuation in turbid tissue phantoms with a thickness of 1 cm, and (3) the optoacoustic system detects signals induced in blood circulating in the radial artery. These data suggest that the optoacoustic system can be used for accurate, noninvasive, real-time, and continuous monitoring of [Hgb].

© 2004 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation

History
Original Manuscript: August 22, 2003
Revised Manuscript: March 18, 2004
Published: June 10, 2004

Citation
Rinat O. Esenaliev, Yuriy Y. Petrov, Olaf Hartrumpf, Donald J. Deyo, and Donald S. Prough, "Continuous, noninvasive monitoring of total hemoglobin concentration by an optoacoustic technique," Appl. Opt. 43, 3401-3407 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-17-3401

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited