OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 17 — Jun. 10, 2004
  • pp: 3449–3455

Liquid-Crystal-Deflector Based Variable Fiber-Optic Attenuator

Nabeel A. Riza and Sajjad A. Khan  »View Author Affiliations

Applied Optics, Vol. 43, Issue 17, pp. 3449-3455 (2004)

View Full Text Article

Acrobat PDF (139 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact, low-component-count, no-moving-parts variable optical attenuator (VOA) is demonstrated for the first time by means of beam spoiling that is implemented via an electrically reconfigurable nonpixelated nematic liquid-crystal deflector. The VOA design features an in-line alignment polarization-insensitive design that does not use bulky polarization splitting and combining optics. The proof-of-concept VOA at 1550 nm demonstrates a 30-dB attenuation range, a 2.5-dB insertion loss, a ≤0.8-dB polarization-dependent loss, and a 1-s maximum attenuation reset time. The VOA design can counter performance-reducing environmental effects such as excess-loss increases due to temperature variations.

© 2004 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2310) Fiber optics and optical communications : Fiber optics
(230.3720) Optical devices : Liquid-crystal devices

Nabeel A. Riza and Sajjad A. Khan, "Liquid-Crystal-Deflector Based Variable Fiber-Optic Attenuator," Appl. Opt. 43, 3449-3455 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. C. Marxer, P. Griss, and N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett. 11, 233–235 (1999).
  2. M. J. Mughal and N. A. Riza, “Compact acousto-optic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett. 14, 510–512 (2002).
  3. X. Orignac, “First ion-exchanged dual thermo-optic variable optical attenuator,” in International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 89–92.
  4. J. L. Jackel, J. J. Veselka, and S. P. Lyman, “Thermally tuned glass Mach-Zehnder interferometer used as a polarization insensitive attenuator,” Appl. Opt. 24, 612–614 (1985).
  5. R. A. Soref, “Liquid-crystal fiber-optic switch,” Opt. Lett. 4, 155–157 (1979).
  6. E. G. Hanson, “Polarization-independent liquid-crystal optical attenuator for fiber-optics applications,” Appl. Opt. 21, 1342–1344 (1982).
  7. K. Hirabayashi, M. Wada, and C. Amano, “Compact optical-fiber variable attenuator arrays with polymer-network liquid crystals,” Appl. Opt. 40, 3509–3517 (2001).
  8. J. J. Pan, H. Wu, W. Wang, X. Qiu, and J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (NFOEC) (Telcordia, Orlando, Fla., 2003), pp. 943–949.
  9. N. A. Riza, “Fault-tolerant fiber-optical beam control modules,” U.S. patent 6,222,954 (24 April 2001).
  10. N. A. Riza and Y. Huang, “Digital fault-tolerant variable fiber optic attenuator using liquid crystals,” in Advances in Optical Information Processing IX, D. R. Pape, ed., Proc. SPIE 4046, 101–106 (2000).
  11. N. A. Riza, “Multi-technology multi-beam-former platform for robust fiber-optical beam control modules,” U.S. patent 6,525,863 (25 February 2003).
  12. M. van Buren and N. A. Riza, “Foundations for low-loss fiber gradient-index lens pair coupling with the self-imaging mechanism,” Appl. Opt. 42, 550–565 (2003).
  13. G. D. Love, J. V. Major, and A. Purvis, “Liquid-crystal prisms for tip-tilt adaptive optics,” Opt. Lett. 19, 1170–1172 (1994).
  14. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998).
  15. L. M. Blinov, Electro-Optical and Magneto-Optical Properties of Liquid Crystals (Wiley, New York, 1983).
  16. S. Yuan and N. A. Riza, “General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses,” Appl. Opt. 38, 3214–3222 (1999).
  17. S. T. Wu, School of Optics and the Center for Research and Education in Optics and Lasers, University of Central Florida, 4000 Central Florida Blvd., Orlando, Fla. 32816–2700 (personal communication, 2003).
  18. I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
  19. Merck Liquid Crystals Catalog (Merck, Darmstadt, Germany, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited