OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 17 — Jun. 10, 2004
  • pp: 3489–3503

Modeling the Optical Properties of Mineral Particles Suspended in Seawater and their Influence on Ocean Reflectance and Chlorophyll Estimation from Remote Sensing Algorithms

Slawomir B. Woźniak and Dariusz Stramski  »View Author Affiliations


Applied Optics, Vol. 43, Issue 17, pp. 3489-3503 (2004)
http://dx.doi.org/10.1364/AO.43.003489


View Full Text Article

Acrobat PDF (399 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical properties of mineral particles suspended in seawater were calculated from the Mie scattering theory for different size distributions and complex refractive indices of the particles. The ratio of the spectral backscattering coefficient to the sum of the spectral absorption and backscattering coefficients of seawater, bb(λ)/[a(λ) + bb(λ)], was analyzed as a proxy for ocean reflectance for varying properties and concentrations of mineral particles. Given the plausible range of variability in the particle size distribution and the refractive index, the general parameterizations of the absorption and scattering properties of mineral particles and their effects on ocean reflectance in terms of particle mass concentration alone are inadequate. The variations in the particle size distribution and the refractive index must be taken into account. The errors in chlorophyll estimation obtained from the remote sensing algorithms that are due to the presence of mineral particles can be very large. For example, when the mineral concentration is 1 g m−3 and the chlorophyll a concentration is low (0.05 mg m−3), current global algorithms based on a blue-to-green reflectance ratio can produce a chlorophyll overestimation ranging from ~50% to as much as 20-fold.

© 2004 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.1350) Scattering : Backscattering
(300.1030) Spectroscopy : Absorption
(350.4990) Other areas of optics : Particles

Citation
Slawomir B. Woźniak and Dariusz Stramski, "Modeling the Optical Properties of Mineral Particles Suspended in Seawater and their Influence on Ocean Reflectance and Chlorophyll Estimation from Remote Sensing Algorithms," Appl. Opt. 43, 3489-3503 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-17-3489


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756–767 (2004).
  2. D. Stramski, S. B. Woźniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749–755 (2004).
  3. R. J. Gibbs, “Transport phases of transition metals in the Amazon and Yukon Rivers,” Geol. Soc. Am. Bull. 88, 829–843 (1977).
  4. B. G. Li, D. Eisma, Q. Ch. Xie, J. Kalf, Y. Li, and X. Xia, “Concentration, clay mineral composition and Coulter counter size distribution of suspended sediment in the turbidity maximum of the Jiaojiang river estuary, Zhejiang, China,” J. Sea Res. 42, 105–116 (1999).
  5. J. M. Prospero, “Mineral-aerosol transport to the North Atlantic and North Pacific: the impact of African and Asian sources,” in The Long Range Atmospheric Transport of Natural and Contaminant Substances, A. H. Knap, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1990), pp. 59–86.
  6. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 40, 709–722 (1977).
  7. H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery—a Review. Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983).
  8. E. M. M. Novo, J. D. Hanson, and P. J. Curran, “The effect of sediment type on the relationship between reflectance and suspended sediment concentration,” Int. J. Remote Sens. 10, 1283–1289 (1989).
  9. Z. Chen, P. J. Curran, and J. D. Hansom, “Derivative reflectance spectroscopy to estimate suspended sediment concentration,” Remote Sens. Environ. 40, 67–77 (1992).
  10. L. Han, “Spectral reflectance with varying suspended sediment concentrations in clear and algae-laden waters,” Photogramm. Eng. Remote Sens. 63, 701–705 (1997).
  11. G. F. Moore, J. Aiken, and S. J. Lavender, “The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1733 (1999).
  12. K. Y. H. Gin, S. T. Koh, and I. I. Lin, “Study of the effects of suspended marine clay on the reflectance spectra of phytoplankton,” Int. J. Remote Sens. 23, 2163–2178 (2002).
  13. R. P. Stumpf and J. R. Pennock, “Calibration of a general optical equation for remote sensing of suspended sediments in a moderately turbid estuary,” J. Geophys. Res. 94, 14363–14371 (1989).
  14. P. J. Curran, J. D. Hansom, S. E. Plummer, and M. I. Pedley, “Multispectral remote sensing of nearshore suspended sediments: a pilot study,” Int. J. Remote Sens. 8, 103–112 (1987).
  15. Y.-H. Ahn, J. Moon, and S. Gallegos, “Development of suspended particulate matter algorithms for ocean color remote sensing,” Korean J. Remote Sens. 17, 285–295 (2001).
  16. D. Doxaran, J.-M. Froidefond, and P. Castaing, “A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,” Int. J. Remote Sens. 23, 5079–5085 (2002).
  17. J. Fisher and R. Doe er, “An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements,” Adv. Space Res. 7, 21–26 (1987).
  18. S. Sathyendranath, L. Prieur, and A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
  19. S. Tassan, “Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters,” Appl. Opt. 33, 2369–2378 (1994).
  20. F. Lahet, S. Ouillon, and P. Forget, “A three-component model of ocean color and its application in the Ebro river mouth area,” Remote Sens. Environ. 72, 181–190 (2000).
  21. R. W. Gould, Jr. and R. A. Arnone, “Remote sensing estimates of inherent optical properties in a coastal environment,” Remote Sens. Environ. 61, 290–301 (1997).
  22. P. Forget, S. Ouillon, F. Lahet, and P. Broche, “Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters,” Remote Sens. Environ. 68, 264–272 (1999).
  23. D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters. Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149–161 (2002).
  24. R. P. Stumpf and J. R. Pennock, “Remote estimation of the diffuse attenuation coefficient in a moderately turbid estuary,” Remote Sens. Environ. 38, 183–191 (1991).
  25. M. Sydor and R. A. Arnone, “Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36, 6905–6912 (1997).
  26. H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Queguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29, 10.1029/2001GL014056 (2002).
  27. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  28. A. Morel and A. Bricaud, “Inherent optical properties of algal cells including picoplankton: theoretical and experimental results,” in Photosynthetic Picoplankton, T. Platt and W. K. W. Li, eds., Can. Bull. Fish. Aquat. Sci. 214, 521–559 (1986).
  29. A. Bricaud and A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25, 571–580 (1986).
  30. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
  31. H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationships between inherent and apparent optical properties of a flat, homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
  32. A. Morel and B. Gentili, “Diffuse reflectance in oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
  33. R. A. Reynolds, D. Stramski, and B. G. Mitchell, “A chlorophyll-dependent semianalytical reflectance model derived from field measurements of absorption and backscattering coefficients within the Southern Ocean,” J. Geophys. Res. 106, 7125–7138 (2001).
  34. P. F. Kerr, Optical Mineralogy (McGraw-Hill, New York, 1977).
  35. L. G. Berry and B. Mason, Mineralogy: Concepts, Descriptions, Determinations (Freeman, San Francisco, 1959).
  36. I. N. Sokolik and O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104, 9423–9444 (1999).
  37. D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
  38. E. M. Patterson, D. A. Gillette, and B. H. Stockton, “Complex index of refraction between 300 and 700 nm for Saharan dust,” J. Geophys. Res. 82, 3153–3160 (1997).
  39. H. Bader, “The hyperbolic distribution of particle size,” J. Geophys. Res. 75, 2822–2830 (1970).
  40. D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
  41. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
  42. F. M. Sogandares and E. S. Fry, “Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997).
  43. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
  44. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. Steemann Nielsen, eds. (Academic, London, 1974), pp. 1–24.
  45. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
  46. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case-I waters),” J. Geophys. Res. 93, 10749–10768 (1988).
  47. L. N. M. Duysens, “The flattening of the absorption spectrum of suspensions as compared to that of solutions,” Biochim. Biophys. Acta 19, 1–12 (1956).
  48. A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28, 1375–1393 (1981).
  49. D. G. Bowers, G. E. L. Harker, and B. Stephan, “Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll,” Int. J. Remote Sens. 17, 2449–2460 (1996).
  50. D. Eisma, Suspended Matter in the Aquatic Environment (Springer-Verlag, Berlin, 1993).
  51. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. E. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
  52. S. B. Hooker and C. R. McClain, “The calibration and validation of SeaWiFS data,” Prog. Oceanogr. 45, 427–465 (2000).
  53. W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon, W. M. Balch, R. Letelier, and P. J. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
  54. J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds. NASA Tech. Memo. 2000–206892(NASA, Greenbelt, Md., 2000), Vol. 11, pp. 9–27.
  55. D. K. Clark, Oceanic Research and Applications Division, National Oceanic and Atmospheric Administration, Camp Springs, Md. 20746 (personal communication, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited