OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 17 — Jun. 10, 2004
  • pp: 3513–3522

Fabrication of Advanced Bragg Gratings with Complex Apodization Profiles by Use of the Polarization Control Method

Hans-Jürgen Deyerl, Nikolai Plougmann, Jesper Bo Jensen, Filip Floreani, Henrik Rokkjær Sørensen, and Martin Kristensen  »View Author Affiliations


Applied Optics, Vol. 43, Issue 17, pp. 3513-3522 (2004)
http://dx.doi.org/10.1364/AO.43.003513


View Full Text Article

Acrobat PDF (205 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The polarization control method offers a flexible, robust, and low-cost route for the parallel fabrication of gratings with complex apodization profiles including several discrete phase shifts and chirp. The performance of several test gratings is evaluated in terms of their spectral response and compared with theoretical predictions. Short gratings with sidelobe-suppression levels in excess of 32 dB and transmission dips lower than 80 dB have been realized. Finally, most of the devices fabricated by the polarization control method show comparable quality to gratings manufactured by far more complex methods.

© 2004 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2340) Fiber optics and optical communications : Fiber optics components
(220.1230) Optical design and fabrication : Apodization
(230.1480) Optical devices : Bragg reflectors

Citation
Hans-Jürgen Deyerl, Nikolai Plougmann, Jesper Bo Jensen, Filip Floreani, Henrik Rokkjær Sørensen, and Martin Kristensen, "Fabrication of Advanced Bragg Gratings with Complex Apodization Profiles by Use of the Polarization Control Method," Appl. Opt. 43, 3513-3522 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-17-3513


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
  2. I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “UV-written in-fiber Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
  3. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
  4. R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).
  5. B. Malo, S. Thériault, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Apodized in-fiber Bragg grating reflectors photoimprinted using a phasemask,” Electron. Lett. 31, 223–225 (1995).
  6. I. Riant, “Fiber Bragg gratings for optical telecommunications,” C. R. Phys. 4, 41–49 (2003).
  7. G. Nykolak, B. J. Eggleton, G. Lenz, and T. A. Strasser, “Dispersion penalty measurements of narrow fiber Bragg gratings at 10 Gb/s,” IEEE Photon. Technol. Lett. 10, 1319–1321 (1998).
  8. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
  9. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
  10. J. Martin and F. Oulette, “Novel writing technique of long and highly reflective in-fiber gratings,” Electron. Lett. 30, 811–812 (1994).
  11. R. Kashyap, A. Swanton, and D. J. Armes, “Simple technique for apodizing chirped and unchirped fiber Bragg gratings,” Electron. Lett. 32, 1226–1228 (1996).
  12. S. J. Mihailov, F. Bilodeau, K. O. Hill, D. C. Johnson, J. Albert, and A. S. Holmes, “Apodization technique for fiber grating fabrication with a halftone transmission amplitude mask,” Appl. Opt. 39, 3670–3677 (2000).
  13. K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, and K. Takiguchi, “Aperiodic in-fiber Bragg gratings for optical dispersion compensation,” in Conference on Optical Fiber Communication, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), Postdeadline paper 77.
  14. R. Stubbe, B. Sahlgren, S. Sandgren, and A. Asseh, “Novel technique for writing long superstructured fiber Bragg gratings,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), Postdeadline paper 1.
  15. M. J. Cole, W. H. Loh, M. N. Zervas, and S. Barcelos, “Moving fiber/phasemask-scanning beam technique for enhanced flexibility in producing fiber gratings with uniform phasemask,” Electron. Lett. 31, 1488–1490 (1995).
  16. J. B. Jensen, N. Plougmann, H. J. Deyerl, P. Varming, J. Hübner, and M. Kristensen, “Polarization control method for ultraviolet writing of advanced Bragg gratings,” Opt. Lett. 27, 1004–1006 (2002).
  17. M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
  18. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Optimised square passband fiber Bragg grating filter with in-band flat group delay response,” Electron. Lett. 34, 800–801 (1998).
  19. H. R. Sørensen and H. J. Deyerl conducted research on the polarization dependence of the photosensitivity in deuterium-loaded fibers.
  20. M. Parent, J. Bures, S. Lacroix, and J. Lapierre, “Propriétés de polarisation des réflecteurs de Bragg induits par photosensibilité dans les fibres optiques monomodes,” Appl. Opt. 24, 354–357 (1985).
  21. P. Niay, P. Bernage, T. Taunay, M. Douay, E. Delevanque, S. Boj, and B. Poumellec, “Polarization selectivity of gratings written in Hi-Bi fibers by the external method,” IEEE Photon. Technol. Lett. 7, 391–393 (1995).
  22. J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hübner, M. Kristensen, and B. Pálsdóttir, “Polarisation control of DFB fiber laser using UV-induced birefringent phase shift,” Electron. Lett. 34, 678–679 (1998).
  23. T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11, 2100–2105 (1994).
  24. A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett. 19, 1260–1262 (1994).
  25. M. Janos, J. Canning, and M. G. Sceats, “Incoherent scattering losses in optical fiber Bragg gratings,” Opt. Lett. 21, 1827–1829 (1996).
  26. P. Niay, M. Douay, P. Bernage, W. X. Xie, B. Leconte, D. Ramecourt, E. Delevaque, J. F. Bayon, H. Poignant, and B. Poumellec, “Does photosensitivity pave the way towards the fabrication of miniature coherent light sources in inorganic glass waveguides?” Opt. Mater. 11, 115–129 (1999).
  27. T. Meyer, P. A. Nicati, P. A. Robert, D. Varelas, H. G. Limberger, and R. P. Salathé, “Reversibility of photoinduced birefringence in ultralow-birefringence fibers,” Opt. Lett. 21, 1661–1663 (1996).
  28. Integrated and Fiber Optical Gratings Design Software, Version 4.0 for Windows (IFO Gratings v. 4.0), Optiwave Corporation Ottawa, Ontario, Canada (2001), http://www.optiwave.com.
  29. P. S. Cross and H. Kogelnik, “Sidelobe suppression in corrugated-waveguide filters,” Opt. Lett. 1, 43–45 (1977).
  30. M. Ibsen, P. Petropoulos, M. N. Zervas, and R. Feced, “Dispersion-free fiber Bragg gratings,” in Optical Fiber Communication Conference, Vol. 54 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper MC1.
  31. J. Skaar, “Synthesis and characterization of fiber Bragg gratings,” Ph.D. thesis (The Norwegian University of Science and Technology, Trondheim, Norway, 2000).
  32. R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).
  33. L. Poladian, “Simple grating synthesis algorithm,” Opt. Lett. 25, 787–789 (2000).
  34. N. Plougmann and M. Kristensen, “Efficient iterative technique for designing Bragg gratings,” Opt. Lett. 29, 23–25 (2004).
  35. D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Marti, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581–2588 (1996).
  36. K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
  37. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987).
  38. B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol. 18, 1418–1432 (2000).
  39. F. Floreani, L. Zhang, H. J. Deyerl, N. Plougmann, H. Ou, J. B. Jensen, and M. Kristensen, “A flexible approach for the apodisation of planar waveguide Bragg gratings,” in Bragg Gratings Photosensitivity and Poling in Glass Waveguides, Vol. 62 of 2003 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2003), paper MD15.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited