OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 17 — Jun. 10, 2004
  • pp: 3543–3547

Relaxation of the single-mode emission conditions in extended-cavity semiconductor lasers with a self-organizing photorefractive filter

Antoine Godard, Gilles Pauliat, Gérald Roosen, and Éric Ducloux  »View Author Affiliations

Applied Optics, Vol. 43, Issue 17, pp. 3543-3547 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (251 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Commercial 1.55-μm extended-cavity semiconductor lasers provide single-mode operation that can be continuously tuned over a range larger than 100 nm without mode hopping. But such performance requires delicate factory adjustment and high mechanical stability of the external cavity. Furthermore, at high emission power the tuning range is limited to small values because of the annoying multimode operations that sometimes occur. We have shown that the alignment constraints can be relaxed by use of an intracavity photorefractive filter. Here we present new results obtained with a crystal with low absorption and high photorefractive gain. We demonstrate that, without inducing excessive additional loss, we can preserve single-mode emission at an output power higher than the maximum power obtained in the absence of a photorefractive crystal over the full tuning range of the laser.

© 2004 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.5960) Lasers and laser optics : Semiconductor lasers
(160.5320) Materials : Photorefractive materials
(190.7070) Nonlinear optics : Two-wave mixing

Original Manuscript: July 11, 2003
Revised Manuscript: February 17, 2004
Published: June 10, 2004

Antoine Godard, Gilles Pauliat, Gérald Roosen, and Éric Ducloux, "Relaxation of the single-mode emission conditions in extended-cavity semiconductor lasers with a self-organizing photorefractive filter," Appl. Opt. 43, 3543-3547 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Ludeke, E. P. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20, 499–500 (1972). [CrossRef]
  2. R. Wyatt, W. J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19, 110–112 (1983). [CrossRef]
  3. F. Favre, D. Le Guen, “82 nm of continuous tunability for an external cavity semiconductor laser,” Electron. Lett. 27, 183–184 (1991). [CrossRef]
  4. P. Zorabedian, “Axial-mode instability in tunable external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 30, 1542–1552 (1994). [CrossRef]
  5. M. de Labachelerie, G. Passedat, “Mode-hop suppression of Littrow grating-tuned lasers,” Appl. Opt. 32, 269–274 (1993). [CrossRef] [PubMed]
  6. M. de Labachelerie, H. Sasada, G. Passedat, “Mode-hop suppression of Littrow grating-tuned lasers: erratum,” Appl. Opt. 33, 3817–3819 (1994). [CrossRef] [PubMed]
  7. A. V. Yarovitskiı̌, V. L. Velichanskiı̌, “Limits of continuous frequency tuning of injection lasers with selective external cavities,” Quantum Electron. 25, 765–769 (1995). [CrossRef]
  8. A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Side-mode gain in grating-tuned extended-cavity semiconductor lasers: investigation of stable single-mode operation conditions,” IEEE J. Quantum Electron. 38, 390–401 (2002). [CrossRef]
  9. A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Relaxation of the alignment tolerances of a 1.55-μm extended-cavity semiconductor laser by use of an intracavity photorefractive filter,” Opt. Lett. 26, 1955–1957 (2001). [CrossRef]
  10. A. Godard, G. Pauliat, G. Roosen, P. Graindorge, P. Martin, “Stabilization of a 1.55 μm extended-cavity semiconductor laser by intracavity dynamic holography,” Eur. Phys. J. Appl. Phys. 20, 191–196 (2002). [CrossRef]
  11. L. Solymar, D. J. Webb, A. Grunnet-Jepsen, “The physics and applications of photorefractive materials,” in Oxford Series in Optical and Imaging Sciences, A. Hasegawa, M. Lapp, B. B. Snavely, H. Stark, A. C. Tam, T. Wilson, eds. (Clarendon, Oxford, 1996), Vol. 11.
  12. J. M. Ramsey, W. B. Whitten, “Controlled scanning of a continuous-wave dye laser with an intracavity photorefractive element,” Opt. Lett. 12, 915–917 (1987). [CrossRef] [PubMed]
  13. N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen, “Laser mode manipulation by intracavity dynamic holography: application to mode selection,” Appl. Phys. B 69, 155–157 (1999). [CrossRef]
  14. S. Maerten, N. Dubreuil, G. Pauliat, G. Roosen, D. Rytz, T. Salva, “Laser diode made single-mode by a self-adaptive photorefractive filter,” Opt. Commun. 208, 183–189 (2002). [CrossRef]
  15. P. Delaye, L. A. de Montmorillon, I. Biaggio, J. C. Launay, G. Roosen, “Wavelength dependent effective trap density in CdTe: evidence of the presence of two photorefractive species,” Opt. Commun. 134, 580–590 (1997). [CrossRef]
  16. A. P. Bogatov, P. G. Eliseev, O. G. Okhotnikov, M. P. Rakhval’skiı̌, K. A. Khaı̌retdinov, “Interaction of modes and self-stabilization of single-frequency emission from injection lasers,” Sov. J. Quantum Electron. 13, 1221–1229 (1983). [CrossRef]
  17. M. Yamada, “Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers,” J. Appl. Phys. 66, 81–89 (1989). [CrossRef]
  18. A. Uskov, J. Mørk, J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769–1781 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited