OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 18 — Jun. 20, 2004
  • pp: 3581–3599

Volume holographic hyperspectral imaging

Wenhai Liu, George Barbastathis, and Demetri Psaltis  »View Author Affiliations


Applied Optics, Vol. 43, Issue 18, pp. 3581-3599 (2004)
http://dx.doi.org/10.1364/AO.43.003581


View Full Text Article

Enhanced HTML    Acrobat PDF (1590 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A volume hologram has two degenerate Bragg-phase-matching dimensions and provides the capability of volume holographic imaging. We demonstrate two volume holographic imaging architectures and investigate their imaging resolution, aberration, and sensitivity. The first architecture uses the hologram directly as an objective imaging element where strong aberration is observed and confirmed by simulation. The second architecture uses an imaging lens and a transmission geometry hologram to achieve linear two-dimensional optical sectioning and imaging of a four-dimensional (spatial plus spectral dimensions) object hyperspace. Multiplexed holograms can achieve simultaneously three-dimensional imaging of an object without a scanning mechanism.

© 2004 Optical Society of America

OCIS Codes
(090.1970) Holography : Diffractive optics
(090.4220) Holography : Multiplex holography
(090.7330) Holography : Volume gratings
(100.6890) Image processing : Three-dimensional image processing
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(180.6900) Microscopy : Three-dimensional microscopy

History
Original Manuscript: November 4, 2003
Revised Manuscript: February 17, 2004
Published: June 20, 2004

Citation
Wenhai Liu, George Barbastathis, and Demetri Psaltis, "Volume holographic hyperspectral imaging," Appl. Opt. 43, 3581-3599 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-18-3581


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Gabor, “Associative holographic memories,” IBM J. Res. Dev. 13, 156–159 (1969). [CrossRef]
  2. E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303–1311 (1966). [CrossRef] [PubMed]
  3. D. Psaltis, “Parallel optical memories,” Byte 17, 179 (1992).
  4. D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (November1995).
  5. J.-J. P. Drolet, E. Chuang, G. Barbastathis, D. Psaltis, “Compact, integrated dynamic holographic memory with refreshed holograms,” Opt. Lett. 22, 552–554 (1997). [CrossRef] [PubMed]
  6. G. W. Burr, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, M. Jurich, B. Marcus, R. M. Macfarlane, “Optical data storage enters a new dimension,” Phys. World 13, 37–42 (July2000).
  7. D. Psaltis, G. W. Burr, “Holographic data storage,” Computer 31(2), 52 (1998). [CrossRef]
  8. E. Chuang, W. H. Liu, J.-J. P. Drolet, D. Psaltis, “Holographic random access memory,” Proc. IEEE 87, 1931–1940 (1999). [CrossRef]
  9. D. Psaltis, “Coherent optical information systems,” Science 298 (5597), 1359–1363 (2002). [CrossRef]
  10. D. Psaltis, D. Brady, X. G. Xu, S. Lin, “Holography in artificial neural networks,” Nature (London) 343, 325–330 (1990). [CrossRef]
  11. H.-Y. S. Li, Y. Qiao, D. Psaltis, “Optical network for real-time face recognition,” Appl. Opt. 32, 5026–5035 (1993). [CrossRef] [PubMed]
  12. D. Psaltis, Y. Qiao, “Adaptive multilayer optical networks,” Prog. Opt. 31, 227–261 (1993). [CrossRef]
  13. M. Levene, G. J. Steckman, D. Psaltis, “Method for controlling the shift invariance of optical correlators,” Appl. Opt. 38, 394–398 (1999). [CrossRef]
  14. A. Pu, R. Denkewalter, D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36, 2737–2746 (1997). [CrossRef]
  15. B. Javidi, E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610–612 (2000). [CrossRef]
  16. H. Lee, X.-G. Gu, D. Psaltis, “Volume holographic interconnections with maximal capacity and minimal cross talk,” J. Appl. Phys. 65, 2191–2194 (1989). [CrossRef]
  17. D. J. Brady, D. Psaltis, “Holographic interconnections in photorefractive waveguides,” Appl. Opt. 30, 2324–2333 (1991). [CrossRef] [PubMed]
  18. K. L. Tan, W. A. Crossland, R. J. Mears, “Dynamic holography for optical interconnections. I. Noise floor of low-cross-talk holographic switches,” J. Opt. Soc. Am. A 18, 195–204 (2001). [CrossRef]
  19. K. L. Tan, S. T. Warr, I. G. Manolis, T. D. Wilkinson, M. M. Redmond, W. A. Crossland, R. T. Mears, B. Robertson, “Dynamic holography for optical interconnections. II. Routing holograms with predictable location and intensity of each diffraction order,” J. Opt. Soc. Am. A 18, 205–215 (2001). [CrossRef]
  20. J. Upatnieks, A. V. Lugt, E. N. Leith, “Correction of lens aberrations by means of holograms,” Appl. Opt. 5, 589–593 (1966). [CrossRef] [PubMed]
  21. E. N. Leith, G. J. Swanson, “Holographic aberration compensation with partially coherent light,” Opt. Lett. 7, 596–598 (1982). [CrossRef] [PubMed]
  22. M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng.219–242 (1997). [CrossRef]
  23. A. Stadelmaier, J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25, 1630–1632 (2000). [CrossRef]
  24. J. Michaells, C. Hettich, J. Mlynek, V. Sandoghdar, “Optical microscopy using a single-molecule light source,” Nature (London) 405, 325–327 (2000). [CrossRef]
  25. E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science (London) 262, 1422–1425 (1993).
  26. B. Herman, J. J. Lemasters, Optical Microscopy (Academic, San Diego, Calif., 1993).
  27. A. Diaspro, S. Annunziata, M. Raimondo, P. Ramoino, M. Robello, “A single-pinhole confocal laser scanning microscope for 3-d imaging of biostructures,” IEEE Eng. Med. Biol. Mag. 18, 106–110 (1999). [CrossRef] [PubMed]
  28. T. Zhang, I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998). [CrossRef]
  29. N. V. Joshi, H. Medina, “Multiple beam interference confocal microscopy: tool for morphological investigation of a living spermatozoon,” Microsc. Microanal. 6, 471–477 (2000). [PubMed]
  30. G. Barbastathis, D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE 87, 2098–2120 (1999). [CrossRef]
  31. W. H. Liu, D. Psaltis, G. Barbastathis, “Real-time spectral imaging in three spatial dimensions,” Opt. Lett. 27, 854–856 (2002). [CrossRef]
  32. M. Born, E. Wolf, Principles of Optics, 6th ed. (Cambridge University, Cambridge, England, 1980).
  33. W. H. Liu, D. Psaltis, “Pixel size limit in holographic memories,” Opt. Lett. 24, 1340–1342 (1999). [CrossRef]
  34. G. Barbastathis, M. Balberg, D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811–813 (1999). [CrossRef]
  35. M. Levene, “Optics in neural computation” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1998).
  36. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  37. W. H. Liu, “Holographic resolution and its application in memory and imaging,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 2001).
  38. P. J. van Heerden, “A new optical method of storing and retrieving information,” Appl. Opt. 2, 387–392 (1963). [CrossRef]
  39. F. T. S. Yu, S. Wu, A. W. Mayers, S. Rajan, “Wavelength multiplexed reflection matched spatial filters using LiNbO3,” Opt. Commun. 81, 343–347 (1991). [CrossRef]
  40. G. A. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992). [CrossRef]
  41. J. Rosen, M. Segev, A. Yariv, “Wavelength-multiplexed computer-generated volume holography,” Opt. Lett. 18, 744–746 (1993). [CrossRef] [PubMed]
  42. S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Zhang, F. T. S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser,” Opt. Commun. 101, 317–321 (1993). [CrossRef]
  43. K. Curtis, A. Pu, D. Psaltis, “Method for holographic storage using peristropic multiplexing,” Opt. Lett. 19, 993–994 (1994). [CrossRef] [PubMed]
  44. G. Barbastathis, M. Levene, D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403–2417 (1996). [CrossRef] [PubMed]
  45. D. Brady, D. Psaltis, “Control of volume holograms,” J. Opt. Soc. Am. A 9, 1167–1182 (1992). [CrossRef]
  46. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782–784 (1995). [CrossRef] [PubMed]
  47. H.-Y. S. Li, D. Psaltis, “Three dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994). [CrossRef] [PubMed]
  48. G. Barbastathis, D. Psaltis, “Shift-multiplexed holographic memory using the two-lambda method,” Opt. Lett. 21, 429–431 (1996). [CrossRef]
  49. H. Külich, “Reconstructing volume holograms without image field losses,” Appl. Opt. 30, 2850–2857 (1991). [CrossRef] [PubMed]
  50. X. H. Zhang, J. J. Xu, Q. Sun, S. Liu, G. Q. Zhang, H. J. Qiao, F. F. Li, G. Y. Zhang, “Dual-wavelength nonvolatile holographic storage,” Opt. Commun. 180, 211–215 (2000). [CrossRef]
  51. E. Chuang, D. Psaltis, “Storage of 1000 holograms with use of a dual-wavelength method,” Appl. Opt. 36, 8445–8454 (1997). [CrossRef]
  52. R. DeVre, J. F. Heanue, K. Gurkan, L. Hesselink, “Transfer functions based on Bragg detuning effects for image-bearing holograms recorded in photorefractive crystals,” J. Opt. Soc. Am. A 13, 1331–1344 (1996). [CrossRef]
  53. G. Barbastathis, “Intelligent holographic databases,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1998).
  54. B. Matsumoto, Methods in Cell Biology (Academic, San Diego, Calif., 1993).
  55. G. Isenberg, Modern Optics, Electronics, and High Precision Techniques in Cell Biology (Springer-Verlag, New York, 1998). [CrossRef]
  56. I. Molecular Probes, in Handbook of Fluorescent Probes and Research Chemicals, 7th ed., R. P. Haugland, ed. ( http:www.probes.com , 2001).
  57. C. Moser, “Optical information processing in crystals and polymers. Three dimensional wavefront sensors,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 2001).
  58. A. Adibi, “Persistent holographic storage in photorefractive crystals,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 2000).
  59. K. Buse, A. Adibi, D. Psaltis, “Nonvolatile holographic storage in doubly doped lithium niobate crystals,” Nature (London) 393, 665–668 (1998). [CrossRef]
  60. C. Moser, I. Maravic, B. Schupp, A. Adibi, D. Psaltis, “Diffraction efficiency of localized holograms in doubly doped LiNbO3 crystals,” Opt. Lett. 25, 1243–1245 (2000). [CrossRef]
  61. C. Moser, B. Schupp, D. Psaltis, “Localized holographic recording in doubly doped lithium niobate,” Opt. Lett. 25, 162–164 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited