OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 18 — Jun. 20, 2004
  • pp: 3726–3731

Determination of primary particle size distributions from time-resolved laser-induced incandescence measurements

Stefan Dankers and Alfred Leipertz  »View Author Affiliations

Applied Optics, Vol. 43, Issue 18, pp. 3726-3731 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For a polydisperse nanoparticle ensemble the evaluation of time-resolved laser-induced incandescence (LII) measurements yields a weighted average value for the primary nanoparticle size. Although this value is sufficient for narrow size distributions, a comprehensive characterization of a particle-evolution process requires the reconstruction of the size distribution. An easy-to-use online approach is presented to evaluate the LII signal regarding higher moments of the distribution. One advantage of this approach is that the size distribution results in a deceleration of the LII signal decay with time after the laser pulse. Therefore LII signal-decay curves are evaluated in two different time intervals after the laser pulse, providing information about the desired distribution parameters that has been tested successfully with experimental curves taken in different soot-formation processes.

© 2004 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.2140) Spectroscopy : Emission
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(350.4990) Other areas of optics : Particles

Original Manuscript: September 5, 2003
Revised Manuscript: March 26, 2004
Published: June 20, 2004

Stefan Dankers and Alfred Leipertz, "Determination of primary particle size distributions from time-resolved laser-induced incandescence measurements," Appl. Opt. 43, 3726-3731 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Ku, D. W. Griffin, P. S. Greenberg, J. Roma, “Buoyancy-induced differences in soot morphology,” Combust. Flame 102, 216–218 (1995). [CrossRef]
  2. Ü. Ö. Köylü, G. M. Faeth, T. L. Farias, M. G. Carvalho, “Fractal and projected structure properties of soot aggregates,” Combust. Flame 100, 621–633 (1995). [CrossRef]
  3. A. Leipertz, S. Dankers, “Characterization of nano-particles using laser-induced incandescence,” Part. Part. Syst. Charact. 20, 81–93 (2003). [CrossRef]
  4. S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995). [CrossRef] [PubMed]
  5. S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284. [CrossRef]
  6. S. Schraml, S. Will, A. Leipertz, “Simultaneous measurement of soot mass concentration and primary particle size in the exhaust of a DI diesel engine by time-resolved laser-induced incandescence (TIRE-LII),” SAE Tech. Paper Series1999-01-0146 (Society of Automotive Engineers, Warrendale, Pa., 1999).
  7. S. Dankers, A. Leipertz, S. Will, J. Arndt, K. Vogel, S. Schraml, A. Hemm, “In-situ measurement of primary particle sizes during carbon black production,” Chem. Eng. Technol. 26, 966–969 (2003). [CrossRef]
  8. A. Leipertz, S. Will, S. Schraml, “Verfahren zur in-situ-Bestimmung von Primärteilchengrößen,” German Patent DE196 06 005 C1 (17Feb.1996).
  9. P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996). [CrossRef]
  10. H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, “Progress in characterization of soot formation by optical methods,” Phys. Chem. Chem. Phys. 4, 3780–3793 (2002). [CrossRef]
  11. L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2207 (1984). [CrossRef] [PubMed]
  12. D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE Tech. Paper Series930079 (Society of Automotive Engineers, Warrendale, Pa., 1993).
  13. S. Dankers, S. Schraml, S. Will, A. Leipertz, “Application of laser-induced incandescence for the determination of primary particle sizes of nanoparticles demonstrated using carbon blacks,” Chem. Eng. Technol. 25, 1160–1164 (2002). [CrossRef]
  14. A. Leipertz, “Transport properties of transparent liquids by photon-correlation spectroscopy,” Int. J. Thermophys. 9, 897–909 (1988). [CrossRef]
  15. A. Leipertz, “Determination of the thermophysical properties of transparent fluids by laser spectroscopy,” Int. Chem. Eng. 34, 188–197 (1994).
  16. A. Leipertz, A. P. Fröba, “Diffusion measurements in fluids by dynamic light scattering,” in Diffusion in Condensed Matter— Methods, Materials, Models, J. Kärger, P. Heitjans, eds. (Springer, Berlin, 2004), Chap. 15, pp. 571–611.
  17. R. A. Dobbins, C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987). [CrossRef]
  18. F. Xu, B. Sunderland, G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame 108, 471–493 (1997). [CrossRef]
  19. K. W. Lee, H. Chen, J. A. Gieseke, “Log-normally preserving size distribution for Brownian coagulation in the free-molecule regime,” Aerosol Sci. Technol. 3, 53–62 (1984). [CrossRef]
  20. H. Bockhorn, F. Fetting, U. Meyer, R. Reck, G. Wannemacher, “Measurement of the soot concentration and soot particle sizes in propane oxygen flames,” in Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa, 1981), pp. 1137–1147. [CrossRef]
  21. R. Fisker, “Estimation of nanoparticle size distributions by image analysis,” J. Nanoparticle Res. 2, 267–277 (2000). [CrossRef]
  22. S. Schraml, S. Will, A. Leipertz, T. Zens, N. D’Alfonso, “Performance characteristics of TIRE-LII soot diagnostics in exhaust gases of diesel engines,” SAE Tech. Paper Series2000-01-2002 (Society of Automotive Engineers, Warrendale, Pa., 2000).
  23. E. Jacob, D. Rothe, R. Schlögl, D. S. Su, J.-O. Müller, R. Nießner, C. Adelhelm, A. Messerer, U. Pöschl, K. Müllen, C. Simpson, Z. Tomovic, “Dieselruß: Mikrostruktur und Oxidationskinetik,” in Proceedings of the Twenty-Fourth International Vienna Motor Symposium (VDI-Fortschritts-Berichte, Dusseldorf, Germany, 2003), pp. 19–45 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited