OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 19 — Jul. 1, 2004
  • pp: 3802–3811

Fourier-domain holography in photorefractive quantum-well films

Kwan Jeong, Leilei Peng, David D. Nolte, and Michael R. Melloch  »View Author Affiliations

Applied Optics, Vol. 43, Issue 19, pp. 3802-3811 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (755 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fourier-domain holography (FDH) is investigated as a candidate for holographic optical coherence imaging to produce real-time images of structure inside living tissue and turbid media. The effects of spatial filtering, the background intensity distributions, and the role of background noise in determining dynamic range are evaluated for both FDH and image-domain holography (IDH). The grating washout effect in FDH (edge enhancement) is removed by use of a vibrating diffuser that consequently improves the image quality. By comparing holographic images and background images of FDH and IDH we show that FDH provides a higher dynamic range and a higher image quality than IDH for this specific application of imaging diffuse volumetric objects.

© 2004 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(070.2590) Fourier optics and signal processing : ABCD transforms
(090.0090) Holography : Holography
(170.1650) Medical optics and biotechnology : Coherence imaging
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(290.0290) Scattering : Scattering

Original Manuscript: January 6, 2004
Revised Manuscript: April 6, 2004
Published: July 1, 2004

Kwan Jeong, Leilei Peng, David D. Nolte, and Michael R. Melloch, "Fourier-domain holography in photorefractive quantum-well films," Appl. Opt. 43, 3802-3811 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. M. R. Hee, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Femtosecond transillumination tomography in thick tissues,” Opt. Lett. 18, 1107–1109 (1993). [CrossRef] [PubMed]
  3. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998), http://www.opticsexpress.org . [CrossRef] [PubMed]
  4. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995). [CrossRef] [PubMed]
  5. R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996). [CrossRef]
  6. R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. W. Kwolek, D. D. Nolte, M. R. Melloch, “Direct-to-video holographic readout in quantum wells for three-dimensional imaging through turbid media,” Opt. Lett. 23, 103–105 (1998). [CrossRef]
  7. M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70, 151–154 (2000). [CrossRef]
  8. M. Tziraki, R. Jones, P. French, D. Nolte, M. Melloch, “Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes,” Appl. Phys. Lett 75, 363–365 (1999). [CrossRef]
  9. P. Yu, M. Mustata, J. J. Turek, P. M. W. French, M. R. Melloch, D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83, 575–577 (2003). [CrossRef]
  10. C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003). [CrossRef]
  11. G. W. Stroke, D. Brumm, A. Funkhouser, “Three-dimensional holography with ‘lensless’ Fourier-transform holograms and coarse P/N polaroid film,” J. Opt. Soc. Am. 55, 1327–1328 (1965). [CrossRef]
  12. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt. 31, 4973–4978 (1992). [CrossRef] [PubMed]
  13. C. B. Burckhardt, “Use of random phase mask for the recording of Fourier transform holograms of data masks,” Appl. Opt. 9, 695–700 (1970). [CrossRef] [PubMed]
  14. W. J. Dallas, “Deterministic diffusers for holography,” Appl. Opt. 12, 1179–1187 (1973). [CrossRef] [PubMed]
  15. M. Kato, Y. Nakayama, T. Suzuki, “Speckle reduction in holography with a spatially incoherent source,” Appl. Opt. 14, 1093–1099 (1975). [CrossRef] [PubMed]
  16. E. N. Leith, J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am. 54, 1295–1301 (1964). [CrossRef]
  17. G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, Physical Optical Notebook: Tutorials in Fourier Optics (SPIE, Bellingham, Wash., 1989). [CrossRef]
  18. D. D. Nolte, S. Balasubramanian, M. R. Melloch, “Nonlinear charge transport in photorefractive semiconductor quantum wells,” Opt. Mater. 18, 199–203 (2001). [CrossRef]
  19. D. D. Nolte, M. R. Melloch, “Photorefractive quantum wells and thin films,” in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 373–451. [CrossRef]
  20. Q. N. Wang, R. M. Brubaker, D. D. Nolte, M. R. Melloch, “Photorefractive quantum wells: transverse Franz-Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626–1641 (1992). [CrossRef]
  21. D. D. Nolte, “Semi-insulating semiconductor heterostructures: optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited