OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 19 — Jul. 1, 2004
  • pp: 3829–3837

Fabrication and characterization of fluorescent rare-earth-doped glass-particle-based tips for near-field optical imaging applications

Lionel Aigouy, Yannick De Wilde, Michel Mortier, Jacques Giérak, and Eric Bourhis  »View Author Affiliations


Applied Optics, Vol. 43, Issue 19, pp. 3829-3837 (2004)
http://dx.doi.org/10.1364/AO.43.003829


View Full Text Article

Enhanced HTML    Acrobat PDF (1868 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fluorescent rare-earth-doped glass particles glued to the end of an atomic force microscope tip have been used to perform scanning near-field optical measurements on nanostructured samples. The fixation procedure of the fluorescent fragment at the end of the tip is described in detail. The procedure consists of depositing a thin adhesive layer on the tip. Then a tip approach is performed on a fragment that remains stuck near the tip extremity. To displace the particle and position it at the very end of the tip, a nanomanipulation is achieved by use of a second tip mounted on piezoelectric scanners. Afterward, the particle size is reduced by focused ion beam milling. These particles exhibit a strong green luminescence where excited in the near infrared by an upconversion mechanism. Images obtained near a metallic edge show a lateral resolution in the 180–200-nm range. Images we obtained by measuring the light scattered by 250-nm holes show a resolution well below 100 nm. This phenomenon can be explained by a local excitation of the particle and by the nonlinear nature of the excitation.

© 2004 Optical Society of America

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(180.0180) Microscopy : Microscopy
(180.5810) Microscopy : Scanning microscopy
(260.3090) Physical optics : Infrared, far

History
Original Manuscript: January 23, 2004
Revised Manuscript: April 8, 2004
Published: July 1, 2004

Citation
Lionel Aigouy, Yannick De Wilde, Michel Mortier, Jacques Giérak, and Eric Bourhis, "Fabrication and characterization of fluorescent rare-earth-doped glass-particle-based tips for near-field optical imaging applications," Appl. Opt. 43, 3829-3837 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-19-3829


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. D. Courjon, C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989–1028 (1994). [CrossRef]
  2. M. A. Paesler, P. J. Moyer, Near Field Optics: Theory, Instrumentation, and Applications (Wiley Interscience, New York, 1996).
  3. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000). [CrossRef]
  4. J. A. Veerman, A. M. Otter, L. Kuipers, N. F. van Hulst, “High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling,” Appl. Phys. Lett. 72, 3115–3117 (1998). [CrossRef]
  5. R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989). [CrossRef]
  6. R. E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992). [CrossRef] [PubMed]
  7. J. R. Krenn, A. Dereux, J. C. Weber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999). [CrossRef]
  8. E. J. Sanchez, L. Novotny, X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999). [CrossRef]
  9. F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994). [CrossRef]
  10. Y. Inouye, S. Kawata, “Near-field scanning optical microscope with a metallic probe tip, Opt. Lett. 19, 159–161 (1994). [CrossRef] [PubMed]
  11. R. Bachelot, P. Gleyzes, A. C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 20, 1924–1926 (1995). [CrossRef] [PubMed]
  12. B. Knoll, F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999). [CrossRef]
  13. R. Kopelman, A. Lewis, K. Lieberman, “Nanometer light source and molecular exciton microscopy,” J. Lumin. 45, 298–299 (1990). [CrossRef]
  14. K. Lieberman, S. Harush, A. Lewis, R. Kopelman, “A light-source smaller than the optical wavelength,” Science 247, 59–61 (1990). [CrossRef] [PubMed]
  15. W. P. Ambrose, P. M. Goodwin, J. C. Martin, R. A. Keller, “Alterations of single-molecule fluorescence lifetimes in near-field optical microscopy,” Science 265, 364–367 (1994). [CrossRef] [PubMed]
  16. L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69, 3806–3808 (1996). [CrossRef]
  17. C. Henkel, V. Sandoghdar, “Single-molecule spectroscopy near structured dielectrics,” Opt. Commun. 158, 250–262 (1998). [CrossRef]
  18. H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000). [CrossRef]
  19. E. H. Synge, “A suggested method for extending microscopic resolution into ultramicroscopic region,” Philos. Mag. 6, 356–362 (1928).
  20. E. H. Synge, “Note on fluorescent particles,” Philos. Mag. 13, 299–300 (1932).
  21. J. Michaelis, C. Hettich, J. Mlynek, V. Sandoghdar, “Optical microscopy using a single-molecule light source,” Nature 405, 325–328 (2000). [CrossRef] [PubMed]
  22. A. Lewis, K. Lieberman, “Near-field optical imaging with a non-evanescently excited high-brightness light-source of subwavelength dimensions,” Nature 354, 214–216 (1991). [CrossRef]
  23. K. Lieberman, A. Lewis, “Superresolution optical imaging with a high-brightness subwavelength light source,” Ultramicroscopy 42–44, 399–407 (1992). [CrossRef]
  24. S. A. Vickery, R. C. Dunn, “Scanning near-field fluorescence resonance energy transfer microscopy,” Biophys. J. 76, 1812–1818 (1999). [CrossRef] [PubMed]
  25. G. T. Shubeita, S. K. Sekatskii, G. Dietler, V. S. Letokhov, “Local fluorescent probes for the fluorescence resonance energy transfer scanning near-field optical microscopy,” Appl. Phys. Lett. 80, 2625–2627 (2002). [CrossRef]
  26. H. Göttlich, W. M. Heckl, “A novel probe for near field optical microscopy based on luminescent silicon,” Ultramicroscopy 61, 145–153 (1995). [CrossRef]
  27. S. K. Sekatskii, V. S. Letokhov, “Single fluorescence centers on the tips of crystal needles: first observation and prospects for application in scanning one-atom fluorescence microscopy,” Appl. Phys. B 63, 525–530 (1996).
  28. S. Kühn, C. Hettich, C. Schmitt, J. P. Pozat, V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. (Oxford) 202, 2–6 (2001). [CrossRef]
  29. L. Aigouy, Y. De Wilde, M. Mortier, “Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,” Appl. Phys. Lett. 83, 147–149 (2003). [CrossRef]
  30. P. Goldner, M. Mortier, “Effect of rare earth impurities on fluorescent cooling in ZBLAN glass,” J. Non-Cryst. Solids 284, 249–254 (2001). [CrossRef]
  31. H. Lihui, L. Xingren, X. Wu, C. Baojiu, L. Jiuling, “Infrared and visible luminescence properties of Er3+ and Yb3+ ions codoped Ca3Al2Ge3O12 glass under 978 nm diode laser excitation,” J. Appl. Phys. 90, 5550–5553 (2001). [CrossRef]
  32. J. H. Hafner, C.-L. Cheung, T. H. Oosterkamp, C. M. Lieber, “High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies,” J. Phys. Chem. B 105, 743–746 (2001). [CrossRef]
  33. N. de Jonge, N. J. van Druten, “Field emission from individual multiwalled carbon nanotubes prepared in an electron microscope,” Ultramicroscopy 95, 85–91 (2003). [CrossRef] [PubMed]
  34. T. Kalkbrenner, M. Ramstein, J. Mlynek, V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. (Oxford) 202, 72–76 (2001). [CrossRef]
  35. J. Giérak, D. Mailly, G. Faini, J. L. Pelouard, P. Denk, F. Pardo, J. Y. Marzin, A. Septier, G. Schmid, J. Ferré, R. Hydman, C. Chappert, J. Flicstein, B. Gayral, J. M. Gerard, “Nano-fabrication with focused ion beams” Microelectron Eng. 57–58, 865–875 (2001). [CrossRef]
  36. C. Bainier, C. Vannier, D. Courjon, J. C. Rivoal, S. Ducourtieux, Y. De Wilde, L. Aigouy, F. Formanek, L. Belliard, P. Siry, B. Perrin, “Comparison of test images obtained from various configurations of scanning near-field optical microscopes,” Appl. Opt. 42, 691–700 (2003). [CrossRef] [PubMed]
  37. Y. Leviatan, “Study of near-zone fields of a small aperture,” J. Appl. Phys. 60, 1577–1583 (1986). [CrossRef]
  38. A. Roberts, “Near-zone fields behind circular apertures in thick, perfectly conducting screens,” J. Appl. Phys. 65, 2896–2899 (1989). [CrossRef]
  39. E. Betzig, R. J. Chichester, “Single molecules observed by scanning near-field optical microscopy,” Science 262, 1422–1425 (1993). [CrossRef] [PubMed]
  40. R. D. Grober, T. Rutherford, T. D. Harris, “Modal approximation for the electromagnetic field of a near-field optical probe,” Appl. Opt. 35, 3488–3495 (1996). [CrossRef] [PubMed]
  41. G. Colas des Francs, C. Girard, A. Dereux, “Theory of near-field optical imaging with a single molecule as light source,” J. Chem. Phys. 117, 4659–4666 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited