OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 19 — Jul. 1, 2004
  • pp: 3848–3853

Time-Frequency Signal Processing of Terahertz Pulses

Daniela Dragoman and Mircea Dragoman  »View Author Affiliations


Applied Optics, Vol. 43, Issue 19, pp. 3848-3853 (2004)
http://dx.doi.org/10.1364/AO.43.003848


View Full Text Article

Acrobat PDF (160 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that some signal-processing techniques, such as the fractional Fourier transform and the spectrogram, which are known to be effective for optical signals, can be implemented at terahertz frequencies and with available terahertz devices. These techniques, contrary to the frequency-resolved optical-gating method for pulse characterization, do not require nonlinear media, which do not exist at terahertz frequencies. Thus the fractional Fourier transform or the spectrogram offers the only possibility of characterizing terahertz pulses simultaneously in time and frequency.

© 2004 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(320.0320) Ultrafast optics : Ultrafast optics
(320.5390) Ultrafast optics : Picosecond phenomena

Citation
Daniela Dragoman and Mircea Dragoman, "Time-Frequency Signal Processing of Terahertz Pulses," Appl. Opt. 43, 3848-3853 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-19-3848


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28, 1–66 (2004).
  2. D. Mittleman, ed., Sensing with Terahertz Radiation, Vol. 85 of the Springer Series in Optical Sciences (Springer, Berlin, New York, 2003).
  3. R. Köhler, H. E. Beere, and D. A. Richie, “Terahertz semiconductor-heterostructure laser,” Nature (London) 417, 156–159 (2002).
  4. H. Roskos, “Overview on time-domain terahertz spectroscopy and its applications in atomic and semiconductor physics,” Phys. Scr. T86, 51–54 (2000).
  5. S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257–1266 (1999).
  6. S. Michan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Doorn, “Analysis trade-off for terahertz imaging,” Microelectron. J. 31, 503–514 (2000).
  7. D. Dragoman, “The Wigner distribution function in optics and optoelectronics” in Progress in Optics, Vol. XXXVII, E. Wolf, ed. (Elsevier, North-Holland, Amsterdam, 1997), pp. 1–56.
  8. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
  9. Z. Jiang and X.-C. Zhang, “THz imaging via electro-optic effect,” IEEE Trans. Microwave Theory Tech. 47, 2644–2650 (1999).
  10. R. Kersting, G. Strasser, and K. Unterrainer, “Terahertz phase modulator,” Electron. Lett. 36, 1156–1158 (2002).
  11. T. Kleine-Ostmann, M. Koch, and P. Dawson, “Modulation of THz radiation by semiconductor nanostructures,” Microwave Opt. Technol. Lett. 35, 343–345 (2002).
  12. C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83, 4497–4499 (2003).
  13. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994).
  14. A. A. Godil, B. A. Auld, and D. M. Bloom, “Picosecond time-lenses,” IEEE J. Quantum Electron. 30, 827–837 (1994).
  15. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent THz detection spectroscopy system using rectification and electro-optical sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
  16. G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurement of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of the THz radiation,” Appl. Phys. Lett. 74, 3450–3452 (1999).
  17. A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, “Fractional transformations in optics,” in Progress in Optics, Vol. XXXVIII, E. Wolf, ed. (Elsevier, North-Holland, Amsterdam, 1998), pp. 263–342.
  18. D. Dragoman and M. Dragoman, “Temporal implementation of Fourier-related transforms,” Opt. Commun. 145, 33–37 (1998).
  19. A. W. Lohmann and B. Soffer, “Relationship between the Radon-Wigner and the fractional Fourier transform,” J. Opt. Soc. Am. A 11, 1798–1801 (1994).
  20. A. W. Lohmann and D. Mendlovic, “Fractional Fourier transform: Photonic implementation,” Appl. Opt. 33, 7661–7664 (1994).
  21. M. F. Erden, H. M. Ozaktas, A. Sahin, and D. Mendlovic, “Design of dynamically adjustable anamorphic fractional Fourier transformer,” Opt. Commun. 136, 52–60 (1997).
  22. D. Mendlovic, R. G. Dorsch, A. W. Lohmann, Z. Zalevsky, and C. Ferreira, “Optical illustration of a varied fractional Fourier-transform order and the Radon-Wigner display,” Appl. Opt. 35, 3925–3929 (1996).
  23. L. Cohen, “Time-frequency distributions—A review,” Proc. IEEE 77, 941–981 (1989).
  24. D. J. Kane, A. J. Taylor, R. Trebino, and R. W. DeLong, “Single-shot measurement of the intensity and phase of a femtosecond UV laser pulse with frequency-resolved optical gating,” Opt. Lett. 19, 1061–1063 (1994).
  25. D. Dragoman and M. Dragoman, “Implementation of the spatial and the temporal cross-ambiguity functions for waveguide fields and optical pulses,” Appl. Opt. 38, 822–827 (1999).
  26. M. Drabbels, G. M. Lankhuijinzen, and L. D. Noordam, “Demonstration of a far-infrared streak camera,” IEEE J. Quantum Electron. 34, 2138–2145 (1998).
  27. D. Dragoman and M. Dragoman, “Wigner-transform implementation in the time-frequency domain,” Appl. Opt. 35, 7025–7030 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited