OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 19 — Jul. 1, 2004
  • pp: 3931–3937

Spatial and temporal evolution of argon sparks

Sivanandan S. Harilal  »View Author Affiliations


Applied Optics, Vol. 43, Issue 19, pp. 3931-3937 (2004)
http://dx.doi.org/10.1364/AO.43.003931


View Full Text Article

Enhanced HTML    Acrobat PDF (463 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical emission spectroscopic studies of laser-created argon sparks are carried out. Pulses of 532 nm and 8 ns from a frequency-doubled Nd:YAG laser are used to create an argon spark at 1 atm. Gated photography of 2 ns is used to investigate spark evolution at early times. Electron temperature and density measurements are made from the spectral data. The Stark broadening of emission lines is used to determine the electron density, and the Boltzmann plot of the singly ionized argon-line intensities is exploited for determination of the electron temperature. The dependence on electron temperature and density on different experimental parameters, such as distance from the focal point, delay time after the initiation of the spark, and laser energy, are discussed.

© 2004 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.2140) Spectroscopy : Emission
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(300.6550) Spectroscopy : Spectroscopy, visible

History
Original Manuscript: August 25, 2003
Revised Manuscript: February 1, 2004
Published: July 1, 2004

Citation
Sivanandan S. Harilal, "Spatial and temporal evolution of argon sparks," Appl. Opt. 43, 3931-3937 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-19-3931


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. L. Chen, J. W. L. Lewis, C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67, 91–103 (2000). [CrossRef]
  2. Y. L. Chen, J. W. L. Lewis, “Visualization of laser-induced breakdown and ignition,” Opt. Exp. 9, 360–372 (2001). [CrossRef]
  3. Y. Gamal, L. El-Nadi, M. O. Omara, B. Ghazoulin, K. A. Sabour, “On the study of the electron kinetic processes in the breakdown of argon by 0.53-μm and 0.248-μm laser radiation,” J. Phys. D 32, 1633–1639 (1999). [CrossRef]
  4. M. Longenecker, L. Huwel, L. Cadwell, D. Nassif, “Laser-generated spark morphology and temperature records from emission and Rayleigh scattering studies,” Appl. Opt. 42, 990–996 (2003). [CrossRef] [PubMed]
  5. L. J. Radziemski, D. A. Cremers, Laser Induced Plasmas and Applications (Marcel Dekker, New York, 1989).
  6. G. V. Ostrovska, A. N. Zaidel, “Laser spark in gases,” Sov. Phys. Usp. 16, 834–855 (1974). [CrossRef]
  7. T. P. Hughes, Plasmas and Laser Light (Wiley, New York, 1975).
  8. C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975). [CrossRef]
  9. X. F. Wang, R. Fedosejevs, G. D. Tsakiris, “Observation of Raman scattering and hard x rays in short pulse laser interaction with high density hydrogen gas,” Opt. Commun. 146, 363–370 (1998). [CrossRef]
  10. S. Kranzusch, C. Peth, K. Mann, “Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas targets,” Rev. Sci. Instrum. 74, 969–974 (2003). [CrossRef]
  11. L. J. Dhareshwar, P. A. Naik, D. D. Bhawalkar, “A plasma shutter to generate a synchronized subnanosecond pulse for optical probing of laser-produced plasmas,” Rev. Sci. Instrum. 62, 369–375 (1991). [CrossRef]
  12. T. X. Phuoc, C. M. White, D. H. McNeill, “Laser spark ignition of a jet diffusion flame,” Opt. Laser Eng. 38, 217–232 (2002). [CrossRef]
  13. D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997). [CrossRef]
  14. J. Sneddon, Y. I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999). [CrossRef]
  15. J. D. Hybl, G. A. Lithgow, S. G. Buckley, “Laser-induced breakdown spectroscopy detection and classification of biological aerosols,” Appl. Spectrosc. 57, 1207–1215 (2003). [CrossRef] [PubMed]
  16. J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001). [CrossRef]
  17. F. Ferioli, P. V. Puzinauskas, S. G. Buckley, “Laser-induced breakdown spectroscopy for on-line engine equivalence ratio measurements,” Appl. Spectrosc. 57, 1183–1189 (2003). [CrossRef] [PubMed]
  18. D. S. Jebens, H. S. Lakkaraju, C. P. McKay, W. J. Borucki, “Time-resolved simulation of lightning by LIP,” Geophys. Res. Lett. 19, 273–276 (1992). [CrossRef] [PubMed]
  19. J. B. Simeonsson, A. W. Miziolek, “Time-resolved emission studies of Arf-laser-produced microplasmas,” Appl. Opt. 32, 939–947 (1993). [CrossRef] [PubMed]
  20. M. Villagran-Muniz, H. Sobral, R. Navarro-Gonzalez, P. F. Velazquez, A. C. Raga, “Experimental simulation of lightning, interacting explosions, and astrophysical jets with pulsed lasers,” Plasma Phys. Controlled Fusion 45, 571–584 (2003). [CrossRef]
  21. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131–R172 (1999). [CrossRef]
  22. G. Bekefi, Principles of Laser Plasmas (Wiley-Interscience, New York, 1976).
  23. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, New York, 1997). [CrossRef]
  24. S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, C. P. G. Vallabhan, “Electron density and temperature measurements in a laser-produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997). [CrossRef]
  25. S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, C. P. G. Vallabhan, “Time evolution of the electron density and temperature in laser-produced plasmas from YBa2Cu3O7,” Appl. Phys. B 66, 633–638 (1998). [CrossRef]
  26. S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faqis, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999). [CrossRef]
  27. C. Parigger, D. H. Plemmons, J. W. L. Lewis, “Spatially and temporally resolved electron number density—measurements in a decaying laser-induced plasma using hydrogen α-profiles,” Appl. Opt. 34, 3325–3330 (1995). [CrossRef] [PubMed]
  28. L. Cadwell, L. Huwel, “Time-resolved emission spectroscopy in laser-generated argon plasmas—determination of Stark broadening parameters,” J. Quant. Spectrosc. Radiat Transfer 83, 579–598 (2004). [CrossRef]
  29. N. Tsuda, Y. Uchida, J. Yamada, “Spectroscopic measurement of high-pressure argon plasma produced by excimer laser,” J. J. Appl. Phys. Part 1 36, 4690–4694 (1997). [CrossRef]
  30. L. R. Evans, C. G. Morgan, “Lens aberration effects in optical-frequency breakdown of gases,” Phys. Rev. Lett. 22, 1099–1102 (1969). [CrossRef]
  31. S. S. Harilal, C. V. Bindhu, V. P. Shevelko, H. J. Kunze, “Charge-exchange collisions in interpenetrating laser-produced magnesium plasmas,” Laser Part. Beams 19, 99–103 (2001). [CrossRef]
  32. T. A. Spiglanin, A. McIlroy, E. W. Fournier, R. B. Cohen, J. A. Syage, “Time-resolved imaging of flame kernels—laser spark ignition of H2O-Ar mixtures,” Combust. Flame 102, 310–328 (1995). [CrossRef]
  33. L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffman, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246–1252 (1983). [CrossRef]
  34. NIST Atomic Spectra Database, http://physics.nist.gov .
  35. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited