OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 2 — Jan. 10, 2004
  • pp: 247–256

From snakes to region-based active contours defined by region-dependent parameters

Stéphanie Jehan-Besson, Muriel Gastaud, Frédéric Precioso, Michel Barlaud, Gilles Aubert, and Éric Debreuve  »View Author Affiliations


Applied Optics, Vol. 43, Issue 2, pp. 247-256 (2004)
http://dx.doi.org/10.1364/AO.43.000247


View Full Text Article

Enhanced HTML    Acrobat PDF (1258 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Image and sequence segmentation of a the segmentation task are discussed from the point of view of optimizing the segmentation criterion. Such a segmentation criterion involves so-called (boundary and region) descriptors, which, in general, may depend on their respective boundaries or regions. This dependency must be taken into account when one is computing the criterion derivative with respect to the unknown object domain (defined by its boundary). If this dependency not considered, some correctional terms may be omitted. Computing the derivative of the segmentation criterion with a dynamic scheme is described. The scheme is general enough to provide a framework for a wide variety of applications in segmentation. It also provides a theoretical meaning to the philosophy of active contours.

© 2004 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.2960) Image processing : Image analysis
(100.5010) Image processing : Pattern recognition

Citation
Stéphanie Jehan-Besson, Muriel Gastaud, Frédéric Precioso, Michel Barlaud, Gilles Aubert, and Éric Debreuve, "From Snakes to Region-Based Active Contours Defined by Region-Dependent Parameters," Appl. Opt. 43, 247-256 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-2-247


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” Int. J. Comput. Vision 1, 321–332 (1988). [CrossRef]
  2. L. Cohen, “On active contour models and balloons,” Comput. Vis. Graph. Image Process. 53, 211–218 (1991).
  3. V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” Int. J. Comput. Vision 22, 61–79 (1997). [CrossRef]
  4. L. Cohen, E. Bardinet, and N. Ayache, “Reconstruction of digital terrain model with a lake,” in Conference on Geometric Methods in Computer Vision II, Medical Imaging 2001, M. Sonka and K. M. Hanson, eds., Proc. SPIE 2031, 38–50 (1993). [CrossRef]
  5. R. Ronfard, “Region-based strategies for active contour models,” Int. J. Comput. Vision 13, 229–251 (1994). [CrossRef]
  6. A. Chakraborty, L. Staib, and J. Duncan, “Deformable boundary finding in medical images by integrating gradient and region information,” IEEE Trans. Med. Imaging 15, 859–870 (1996). [CrossRef] [PubMed]
  7. S. Zhu and A. Yuille, “Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 18, 884–900 (1996). [CrossRef]
  8. N. Paragios and R. Deriche, “Geodesic active regions for motion estimation and tracking,” in Proceedings of International Conference on Computer Vision (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1999), pp. 688–694. [CrossRef]
  9. N. Paragios and R. Deriche, “Geodesic active regions and level set methods for supervised texture segmentation,” Int. J. Comput. Vision 46, 223–247 (2002). [CrossRef]
  10. A. J. Yezzi, A. Tsai, and A. Willsky, “A statistical approach to snakes for bimodal and trimodal imagery,” in Proceedings of International Conference on Computer Vision (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1999), pp. 898–903. [CrossRef]
  11. C. Chesnaud, P. Réfrégier, and V. Boulet, “Statistical region snake-based segmentation adapted to different physical noise models,” IEEE Trans. Pattern Anal. Mach. Intell. 21, 1145–1156 (1999). [CrossRef]
  12. C. Samson, L. Blanc-Féraud, G. Aubert, and J. Zerubia, “A level set model for image classification,” Int. J. Comput. Vision 40, 187–197 (2000). [CrossRef]
  13. T. Chan and L. Vese, “Active contours without edges,” IEEE Trans. Image Process. 10, 266–277 (2001). [CrossRef]
  14. E. Debreuve, M. Barlaud, G. Aubert, and J. Darcourt, “Space time segmentation using level set active contours applied to myocardial gated SPECT,” IEEE Trans. Med. Imaging 20, 643–659 (2001). [CrossRef] [PubMed]
  15. O. Amadieu, E. Debreuve, M. Barlaud, and G. Aubert, “Inward and outward curve evolution using level set method,” in Proceedings of International Conference on Image Processing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1999), pp. 188–192.
  16. J. Sokolowski and J.-P. Zolésio, Introduction to Shape Optimization: Shape Sensitivity Analysis (Springer-Verlag, Berlin, 1992). [CrossRef]
  17. M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Analysis, Differential Calculus and Optimization (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 2001).
  18. S. Jehan-Besson, M. Barlaud, and G. Aubert, “DREAM2S: deformable regions driven by an Eulerian accurate minimization method for image and video segmentation,” Int. J. Comput. Vision 53, 45–70 (2003). [CrossRef]
  19. G. Aubert, M. Barlaud, O. Faugeras, and S. Jehan-Besson, “Image segmentation using active contours: calculus of variations or shape gradients?” SIAM J. Appl. Math. 63, 2128–2154 (2003). [CrossRef]
  20. M. Gastaud, M. Barlaud, and G. Aubert, “Tracking video objects using active contours,” in Proceedings of Workshop on Motion and Video Computing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 90–95.
  21. Y. Chen, H. D. Tagare, S. Thiruvenkadam, F. Huang, D. Wilson, K. S. Gopinath, R. W. Briggs, and E. A. Geiser, “Using prior shapes in geometric active contours in a variational framework,” Int. J. Comput. Vision 50, 315–328 (2002). [CrossRef]
  22. D. Cremers, F. Tischhäuser, J. Weickert, and C. Schnörr, “Diffusion snakes: introducing statistical shape knowledge into the Mumford-Shah functional,” Int. J. Comput. Vision 50, 295–313 (2002). [CrossRef]
  23. P. Charbonnier and O. Cuisenaire, “Une étude des contours actifs: modèles classique, géométrique et géodésique,” Tech. Rep. 163 (Laboratoire de Télécommunications et Télédétection, Université Catholique de Louvain, Louvain, France, 1996).
  24. S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys. 79, 12–49 (1988). [CrossRef]
  25. G. Barles, “Remarks on a flame propagation model,” Tech. Rep. 464, Project Sinus (Institute National de Recherche en Informatique et en Automatique, Sophia Antipolis, France, 1985).
  26. D. L. Chopp, “Computing minimal surfaces via level set curvature flow,” J. Comput. Phys. 106, 77–91 (1993). [CrossRef]
  27. D. Adalsteinsson and J. A. Sethian, “A fast level set method for propagating interfaces,” J. Comput. Phys. 118, 269–277 (1995). [CrossRef]
  28. D. Adalsteinsson and J. A. Sethian, “The fast construction of extension velocities in level set methods,” J. Comput. Phys. 148, 2–22 (1999). [CrossRef]
  29. J. Gomes and O. D. Faugeras, “Reconciling distance functions and level sets,” J. Visual Commun. Image Represent. 11, 209–223 (2000). [CrossRef]
  30. J. A. Sethian, “A fast marching level set method for monotonically advancing fronts,” Proc. Natl. Acad. Sci. (USA) 93, 1591–1595 (1996). [CrossRef]
  31. P. Thevenaz, T. Blu, and M. Unser, “Interpolation revisited [medical images application],” IEEE Trans. Med. Imaging 19, 739–758 (2000). [CrossRef]
  32. M. Jacob, T. Blu, and M. Unser, “A unifying approach and interface for spline-based snakes,” in International Symposium on Medical Imaging: Image Processing, Medical Imaging 2001, M. Sonka and K. M. Hanson, eds., Proc. SPIE 4322, 340–347 (2001). [CrossRef]
  33. F. Precioso and M. Barlaud, “B-spline active contours with handling of topological changes for fast video segmentation,” EURASIP J. Appl. Signal Process. 2002, 555–560 (2002). [CrossRef]
  34. F. Precioso and M. Barlaud, “Regular spatial b-spline active contours for fast video segmentation,” in Proceedings of International Conference on Image Processing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 761–764.
  35. M. Unser, A. Aldroubi, and M. Eden, “B-spline signal processing. I. Theory,” IEEE Trans. Signal Process. 41, 821–833 (1993). [CrossRef]
  36. F. Precioso, M. Barlaud, T. Blu, and M. Unser, “Smoothing b-spline active contour for fast and robust image and video segmentation,” in Proceedings of International Conference on Image Processing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003).
  37. S. Jehan-Besson, M. Barlaud, and G. Aubert, “Video object segmentation using Eulerian region-based active contours,” in Proceedings of International Conference on Computer Vision (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2001), pp. 353–361.
  38. M. Gastaud and M. Barlaud, “Video segmentation using region based active contours on a group of pictures,” in Proceedings of International Conference on Image Processing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), Vol. II, pp. 81–84.
  39. S. Soatto and A. J. Yezzi, “Deformation: deforming motion, shape average and the joint registration and segmentation of images,” in Proceedings of European Conference on Computer Vision (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 32–47.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited