OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 2 — Jan. 10, 2004
  • pp: 283–292

Clustering of Polarization-Encoded Images

Jihad Zallat, Christophe Collet, and Yoshitate Takakura  »View Author Affiliations


Applied Optics, Vol. 43, Issue 2, pp. 283-292 (2004)
http://dx.doi.org/10.1364/AO.43.000283


View Full Text Article

Acrobat PDF (1875 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polarization-encoded imaging consists of the distributed measurements of polarization parameters for each pixel of an image. We address clustering of multidimensional polarization-encoded images. The spatial coherence of polarization information is considered. Two methods of analysis are proposed: polarization contrast enhancement and a more-sophisticated image-processing algorithm based on a Markovian model. The proposed algorithms are applied and validated with two different Mueller images acquired by a fully polarimetric imaging system.

© 2004 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.5010) Image processing : Pattern recognition
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(260.5430) Physical optics : Polarization

Citation
Jihad Zallat, Christophe Collet, and Yoshitate Takakura, "Clustering of Polarization-Encoded Images," Appl. Opt. 43, 283-292 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-2-283


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. M. Bueno and P. Artal, “Double-pass imaging polarimetry in the human eye,” Opt. Lett. 24, 64–66 (1999).
  2. M. H. Smith, “Interpreting Mueller matrix images of tissues,” in Laser-Tissue Interaction XII: Photochemical, Photothermal, and Photomechanical, D. D. Duncan, S. L. Jacques, and P. C. Johnson, eds., Proc. SPIE 4257, 82–89 (2001).
  3. P. Y. Gerligand, M. H. Smith, and R. A. Chipman, “Polarimetric images of a cone,” Opt. Express 4, 420–430 (1999), http://www.opticsexpress.org.
  4. S. Rahmann, “Polarization images: a geometric interpretation for shape analysis,” in 15th International Conference on Pattern Recognition (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2000), Vol. 3, pp. 542–546.
  5. G. D. Lewis, D. L. Jordan, and P. J. Roberts, “Backscattering target detection in a turbid medium by polarization discrimination,” Appl. Opt. 38, 3937–3944 (1999).
  6. M. H. Smith, J. D. Howe, J. B. Woodruff, M. A. Miller, G. R. Ax, T. E. Petty, and E. A. Sornsin, “Multispectral infrared Stokes imaging polarimeter,” in Polarization: Measurement, Analysis, and Remote Sensing, D. B. Chenault, M. J. Duggin, W. G. Egan, and D. H. Goldstein, eds., Proc. SPIE 3754, 137–143.
  7. G. W. Kattawar and M. J. Rakovic, “Virtues of Mueller matrix imaging for underwater target detection,” Appl. Opt. 38, 6431–6438 (1999).
  8. F. Goudail and P. Réfrégier, “Statistical algorithms for processing polarimetric images in coherent light,” Trait. Signal 18(5–6), 297–319 (2001).
  9. Z.-F. Xing, “On the deterministic and non-deterministic Mueller matrix,” J. Mod. Opt. 39, 461–484 (1992).
  10. B. J. Howell, “Measurements of the polarization effects of an instrument using partially polarized light,” Appl. Opt. 18, 809–812 (1979).
  11. E. S. Fry and G. W. Kattawar, “Relationships between elements of the Stokes matrix,” Appl. Opt. 20, 2811–2814 (1981).
  12. A. B. Kostinski, C. R. Givens, and J. M. Kwiatkowski, “Constraints on Mueller matrices of polarization optics,” Appl. Opt. 32, 1646–1651 (1993).
  13. S. R. Cloude, “Group theory and polarisation algebra,” Optik (Stuttgart) 75, 26–36 (1986).
  14. S.-Y. Lu and R. A. Chipman, “Mueller matrices and the degree of polarization,” Opt. Commun. 146, 11–14 (1998).
  15. S.-Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).
  16. C. R. Givens and A. B. Kostinski, “A simple necessary and sufficient condition on physically realizable Mueller matrices,” J. Mod. Opt. 40, 471–481 (1993).
  17. C. V. M. van der Mee, “An eigenvalue criterion for matrices transforming Stokes parameters,” J. Math. Phys. 34, 5072–5088 (1993).
  18. R. Sridhar and R. Simon, “Normal form for Mueller matrices in polarization optics,” J. Mod. Opt. 41, 1903–1915 (1994).
  19. D. G. M. Anderson and R. Barakat, “Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix,” J. Opt. Soc. Am. A 11, 2305–2319 (1994).
  20. C. V. M. van der Mee and J. W. Hovenier, “Structure of matrices transforming Stokes parameters,” J. Math. Phys. 33, 3574–3584 (1992).
  21. E. Landi degl’ Innocenti and J. C. del Toro Iniesta, “Physical significance of experimental Mueller matrices,” J. Opt. Soc. Am. A 15, 533–537 (1998).
  22. M. S. Kumar and R. Simon, “Characterization of Mueller matrices in polarization optics,” Opt. Commun. 88, 464–470 (1992).
  23. R. M. A. Azzam, “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. 2, 148–150 (1978).
  24. R. A. Chipman, “Polarimetry,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1993), pp. 22.1–22.33.
  25. R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis (Wiley Interscience, New York, 1973).
  26. C. Graffigne, F. Heitz, Pérez, F. Prêteux, M. Sigelle, and J. Zerubia, “Hierarchical Markov random field models applied to image analysis: a review,” in Neural, Morphological, and Stochastic Methods in Image and Signal Processing, E. R. Dougherty, F. J. Preteux, and S. S. Shen, eds., Proc. SPIE 2568, 2–17 (1995).
  27. M. R. Luettgen, W. C. Karl, A. S. Willsky, and R. Tenney, “Multiscale representation of Markov random fields,” IEEE Trans. Signal Process. 41, 3377–3395 (1993).
  28. C. A. Bouman and M. Shapiro, “A multiscale random field model for Bayesian image segmentation,” IEEE Trans. Image Process. 3, 162–177 (1994).
  29. P. Pérez and F. Heitz, “Restriction of a Markov random field on a graph and multiresolution statistical image modeling,” IEEE Trans. Inf. Theory 42, 180–190 (1996).
  30. Z. Kato, M. Berthod, and J. Zérubia, “A hierarchical Markov random field model and multitemperature annealing for parallel image classification,” Graph. Models Image Process. 58, 18–37 (1996).
  31. N. Giordana and W. Pieczynski, “Estimation of generalized multisensor hidden Markov chains and unsupervised image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 19, 465–475 (1997).
  32. M. Mignotte, C. Collet, P. Pérez, and P. Bouthemy, “Three-class Markovian segmentation of high resolution sonar images,” J. Computer Vision Image Underst. 76, 191–204 (1999).
  33. P. Pérez, A. Chardin, and J.-M. Laferté, “Noniterative manipulation of discrete energy-based models for image analysis,” Pattern Recogn. 33, 573–586 (2000).
  34. W. Pieczynski, “Statistical image segmentation,” Mach. Graph. Vision 1, 261–268 (1992).
  35. P. Rostaing, J.-N. Provost, and C. Collet, “Unsupervised multispectral image segmentation using generalized Gaussian noise model,” in Proceedings of the International Workshop EMMCVPR’99, Vol. 1654 of Springer Lecture Notes in Computer Science (Springer-Verlag, Berlin, 1999), pp. 141–156.
  36. J.-M. Laferté, P. Pérez, and F. Heitz, “Discrete Markov image modeling and inference on the quad-tree,” IEEE Trans. Image Process. 9, 390–404 (2000).
  37. P. Rostaing, P. Pérez, J.-N. Provost, C. Collet, and P. Bouthemy, “Multispectral spot images analysis using generalized Gaussian modeling: application to water depth mapping,” Comput. Vis. Image Underst. (to be published).
  38. S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6, 721–741 (1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited