OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 2 — Jan. 10, 2004
  • pp: 366–378

Three-dimensional tracking of multiple skin-colored regions by a moving stereoscopic system

Antonis A. Argyros and Manolis I. A. Lourakis  »View Author Affiliations


Applied Optics, Vol. 43, Issue 2, pp. 366-378 (2004)
http://dx.doi.org/10.1364/AO.43.000366


View Full Text Article

Enhanced HTML    Acrobat PDF (1037 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A system that performs three-dimensional (3D) tracking of multiple skin-colored regions (SCRs) in images acquired by a calibrated, possibly moving stereoscopic rig is described. The system consists of a collection of techniques that permit the modeling and detection of SCRs, the determination of their temporal association in monocular image sequences, the establishment of their correspondence between stereo images, and the extraction of their 3D positions in a world-centered coordinate system. The development of these techniques has been motivated by the need for robust, near-real-time tracking performance. SCRs are detected by use of a Bayesian classifier that is trained with the aid of a novel technique. More specifically, the classifier is bootstrapped with a small set of training data. Then, as new images are being processed, an iterative training procedure is employed to refine the classifier. Furthermore, a technique is proposed to enable the classifier to cope with changes in illumination. Tracking of SCRs in time as well as matching of SCRs in the images of the employed stereo rig is performed through computationally inexpensive and robust techniques. One of the main characteristics of the skin-colored region tracker (SCRT) instrument is its ability to report the 3D positions of SCRs in a world-centered coordinate system by employing a possibly moving stereo rig with independently verging CCD cameras. The system operates on images of dimensions 640 × 480 pixels at a rate of 13 Hz on a conventional Pentium 4 processor at 1.8 GHz. Representative experimental results from the application of the SCRT to image sequences are also provided.

© 2004 Optical Society of America

OCIS Codes
(150.6910) Machine vision : Three-dimensional sensing
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics

History
Original Manuscript: May 15, 2003
Revised Manuscript: September 19, 2003
Published: January 10, 2004

Citation
Antonis A. Argyros and Manolis I. A. Lourakis, "Three-dimensional tracking of multiple skin-colored regions by a moving stereoscopic system," Appl. Opt. 43, 366-378 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-2-366

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited