OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 2 — Jan. 10, 2004
  • pp: 442–451

Three-dimensional object feature extraction and classification with computational holographic imaging

Sekwon Yeom and Bahram Javidi  »View Author Affiliations

Applied Optics, Vol. 43, Issue 2, pp. 442-451 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1778 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We address three-dimensional (3D) object classification with computational holographic imaging. A 3D object can be reconstructed at different planes by use of a single hologram. We apply principal component and Fisher linear discriminant analyses based on Gabor-wavelet feature vectors to classify 3D objects measured by digital interferometry. Experimental and simulation results are presented for regional filtering concentrated at specific positions and for overall grid filtering. The proposed technique substantially reduces the dimensionality of the 3D classification problem. To the best of our knowledge, this is the first report on the use of the proposed technique for 3D object classification.

© 2004 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(100.5010) Image processing : Pattern recognition
(100.6740) Image processing : Synthetic discrimination functions
(100.6890) Image processing : Three-dimensional image processing

Original Manuscript: May 13, 2003
Revised Manuscript: August 26, 2003
Published: January 10, 2004

Sekwon Yeom and Bahram Javidi, "Three-dimensional object feature extraction and classification with computational holographic imaging," Appl. Opt. 43, 442-451 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Rosen, “Three-dimensional joint transform correlator,” Appl. Opt. 37, 7538–7544 (1998). [CrossRef]
  2. J. J. Esteve-Taboada, D. Mas, J. Garcia, “Three-dimensional object recognition by Fourier transform profilometry,” Appl. Opt. 38, 4760–4765 (1999). [CrossRef]
  3. F. Goudail, P. Réfrégier, “Statistical algorithms for target detection in coherent active polarimetric images,” J. Opt. Soc. Am. 18, 3049–3060 (2001). [CrossRef]
  4. F. A. Sadjadi, “New results in the use of polarization diversity for classification of radar targets,” in Automatic Target Recognition XII, F. A. Sadjadi, ed., Proc. SPIE4726, 26–34 (2002). [CrossRef]
  5. B. Javidi, ed., Image Recognition and Classification: Algorithms, Systems, and Applications (Marcel Dekker, New York, 2002). [CrossRef]
  6. B. Javidi, E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610–612 (2000). [CrossRef]
  7. Y. Frauel, E. Tajahuerce, M. Castro, B. Javidi, “Distortion-tolerant three-dimensional object recognition with digital holography,” Appl. Opt. 40, 3887–3893 (2001). [CrossRef]
  8. Y. Frauel, B. Javidi, “Neural network for three-dimensional object recognition based on digital holography,” Opt. Lett. 26, 1478–1480 (2001). [CrossRef]
  9. Y. Frauel, B. Javidi, “Digital three-dimensional image correlation by use of computer-reconstructed integral imaging,” Appl. Opt. 41, 5488–5496 (2002). [CrossRef] [PubMed]
  10. M. T. Perona, A. Mahalanobis, K. Norris-Zachery, “Ladar automatic target recognition using correlation filters,” in Automatic Target Recognition IX, F. A. Sadjadi, ed., Proc. SPIE3718, 388–396 (1999). [CrossRef]
  11. M. T. Perona, A. Mahalanobis, K. Norris-Zachery, “System-level evaluation of ladar ATR using correlation filters,” in Automatic Target Recognition X, F. A. Sadjadi, ed., Proc. SPIE4050, 69–75 (2000). [CrossRef]
  12. A. Mahalanobis, “Review of correlation filters and their application for scene matching,” in Optoelectronic Devices and Systems for Processing, B. Javidi, K. M. Johnson, eds., Proc. SPIECR65, 240–260 (1996).
  13. R. O. Duda, P. E. Hart, D. G. Stork, Pattern Classification 2nd, (Wiley, New York, 2001).
  14. J. G. Daugman, “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters,” J. Opt. Soc. Am. A 2, 1160–1169 (1985). [CrossRef] [PubMed]
  15. J. G. Daugman, “Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression,” IEEE Trans. Acoust. Speech Signal Process. 36, 1169–1179 (1988). [CrossRef]
  16. T. S. Lee, “Image representation using 2D Gabor wavelets,” IEEE Trans. Pattern Anal. Mach. Intell. 18, 959–971 (1996). [CrossRef]
  17. P. N. Belhumer, J. P. Hespanha, D. J. Kriegman, “Eigenfaces vs. Fisherfaces: recognition using class specific linear projection,” IEEE Trans. Pattern Anal. Mach. Intell. 19, 711–720 (1997). [CrossRef]
  18. D. L. Swets, J. Weng, “Using discriminant eigenfeatures for image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell. 18, 831–836 (1996). [CrossRef]
  19. M. J. Lyons, J. Budynek, S. Akamatsu, “Automatic classification of single facial images,” IEEE Trans. Pattern Anal. Mach. Intell. 21, 1357–1362 (1999). [CrossRef]
  20. C. Liu, H. Wechsler, “Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition,” IEEE Trans. Image Process. 11, 467–476 (2002). [CrossRef]
  21. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef] [PubMed]
  22. M. Lades, J. C. Vorbruggen, J. Buhmann, J. Lange, C. v.d. Malsburg, R. P. Wurtz, W. Konen, “Distortion invariant object recognition in the dynamic link architecture,” IEEE Trans. Comput. 42, 300–311 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited