OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 20 — Jul. 9, 2004
  • pp: 3993–3998

Spectroscopic studies of autofluorescence substances existing in human tissue: influences of lactic acid and porphyrins

Yasuhiro Ueda and Masakazu Kobayashi  »View Author Affiliations


Applied Optics, Vol. 43, Issue 20, pp. 3993-3998 (2004)
http://dx.doi.org/10.1364/AO.43.003993


View Full Text Article

Enhanced HTML    Acrobat PDF (191 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The influence of lactic acid or porphyrins on the optical properties of tissue fluorophores is investigated by autofluorescence (AF) spectroscopy measurement with a GaN-based ultraviolet laser diode along with Fourier-transform IR (FTIR) spectroscopy measurement. As the lactic-acid concentration becomes dense, the AF peak intensity from elastin and desmosine solutions become wholly weak. A similar reduction in the AF intensity is observed for nicotinamide adenine dinucleotide (NADH) solutions. FTIR analysis indicates that the lactic acid causes the conformational change in elastin and the oxidation of NADH, which can be related to changes in the AF properties. The peak intensity of the tissue fluorophores also becomes weak when porphyrins are added, although the conformational change in each tissue fluorophore is not confirmed from FTIR analysis. Judging from the change in the scattering-light intensity of the excitation source, the observed change mainly originates from the absorption of the excitation source by porphyrins.

© 2004 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(300.6340) Spectroscopy : Spectroscopy, infrared

History
Original Manuscript: May 30, 2003
Revised Manuscript: December 1, 2003
Published: July 10, 2004

Citation
Yasuhiro Ueda and Masakazu Kobayashi, "Spectroscopic studies of autofluorescence substances existing in human tissue: influences of lactic acid and porphyrins," Appl. Opt. 43, 3993-3998 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-20-3993


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Alfano, A. Pradhan, G. C. Tang, S. J. Wahl, “Optical spectroscopic diagnosis of cancer and normal breast tissue,” J. Opt. Soc. Am. B 6, 1018–1023 (1989). [CrossRef]
  2. D. Wang, J. V. Dam, J. M. Crawford, E. Apreisinger, Y. Wang, M. S. Feld, “Fluorescence endoscopy imaging of human colonic adenomas,” Gastroenterology 111, 1182–1191 (1996). [CrossRef] [PubMed]
  3. R. Drezek, K. Sokolov, U. Ulzinger, I. Boiko, A. Malpica, M. Follen, R. R. Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001). [CrossRef] [PubMed]
  4. J. Tang, F. Zeng, H. Savage, P. P. Ho, R. R. Alfano, “Fluorescence spectroscopic imaging to detect changes in collagen and elastin following laser tissue welding,” J. Clin. Laser Med. Surg. 18, 3–8 (2000).
  5. B. J. W. Venmans, T. J. M. Van Boxem, E. F. Smit, P. E. Postmus, T. G. Sutedja, “Results of two years experience with fluorescence bronchoscopy in detection of preinvasive bronchial neoplasia,” Diagn. Ther. Endosc. 5, 77–84 (1999). [CrossRef]
  6. S. Lam, C. MacAulay, J. C. leRiche, B. Palcic, “Detection and localization of early lung cancer by fluorescence bronchoscopy,” Cancer Suppl. 89, 2468–2473 (2000). [CrossRef]
  7. M. Kobayashi, K. Shibuya, H. Hoshino, T. Fujisawa, “Spectroscopic analysis of the autofluorescence from human bronchus using an ultraviolet laser diode,” J. Biomed. Opt. 7, 603–608 (2002). [CrossRef] [PubMed]
  8. M. Kobayashi, K. Shibuya, H. Hoshino, T. Fujisawa, “Autofluorescence measurement of human bronchi using ultraviolet laser diodes,” J. Jpn. Soc. Bronchol. 24, 384–390 (2002).
  9. J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steiz, A. M. Weiner, Molecular Biology of the Gene (Benjamin/Cummings, Menlo Park, Calif., 1987).
  10. R. Adachi, T. Utsui, K. Furuawa, “Development of autofluorescence endoscope imaging system,” Diagn. Ther. Endosc. 5, 65–70 (1999). [CrossRef]
  11. K. Shibuya, H. Hoshino, M. Chiyo, K. Yasufuku, T. Iizasa, Y. Saitoh, M. Baba, K. Hiroshima, H. Ohwada, T. Fujisawa, “Subepithelia vascular patterns in bronchial dysplasias using a high magnification bronchovideoscope,” Thorax 57, 902–907 (1992). [CrossRef]
  12. N. R. Davis, R. A. Anwar, “On the mechanism of formation of desmosine and isodesmosine cross-links of elastin,” J. Am. Chem. Soc. 92, 3778–3782 (1969). [CrossRef]
  13. B. Czochralska, “Oxidation of excited-state NADH and NAD dimer in an aqueous medium,” Biochim. Biophys. Acta 80, 403–409 (1984). [CrossRef]
  14. G. Cassanas, M. Morssli, E. Fabregue, L. Bardet, “Vibrational spectra of lactic acid and lactates,” J. Raman Spectrosc. 22, 409–413 (1991). [CrossRef]
  15. A. Bertoluzza, S. Bonora, G. Fini, M. A. Morelli, “Spectroscopic studies of connective tissues: native and hydrated elastin,” Can. J. Spectrosc. 34, 13–14 (1989).
  16. M. Jackson, L. P. Choo, P. H. Watson, W. C. Halliday, H. H. Mantsch, “Beware of connective proteins: assignment and implications of collagen absorption in infrared spectra of human tissue,” Biochim. Biophys. Acta 1270, 1–6 (1995). [CrossRef] [PubMed]
  17. C. Nadolny, G. Zundel, “Protonation, conformation, and hydrogen bonding of nicotinamide adenin dinucleotide—an FTIR study,” J. Mol. Struct. 385, 81–87 (1996). [CrossRef]
  18. M. Abe, Y. Kyogoku, “Vibrational analysis of flavin derivatives: normal coordinate treatments of lumiflavin,” Spectrochim. Acta Part A 43, 1027–1037 (1987). [CrossRef]
  19. V. I. Birss, A. S. Hinman, C. E. McGarvey, J. Segal, “In situ FTIR thin-layer reflectance spectroscopy of flavin adenine dinucleotide at a mercury/gold electrode,” Electrochim. Acta 39, 2449–2454 (1994). [CrossRef]
  20. S. L. Jacques, “Tissue fluorescence,” in Fifth International Photodynamic Association Biennial Meeting, P. A. Cortest, ed., Proc. SPIE2371, 2–7 (1995). [CrossRef]
  21. J. P. Berthier, E. Raynal, S. Kimel, S. Avrillier, J. P. Ollivier, “XeCl laser action at medium fluences on biological tissues: fluorescence study and simulation with a chemical solution,” J. Photochem. Photobiol. B 5, 495–503 (1990). [CrossRef] [PubMed]
  22. B. Palcic, S. Lam, J. Hung, C. MacAulay, “Detection and localization of early lung cancer by imaging technique,” Chest 99, 742–743 (1991). [CrossRef] [PubMed]
  23. M. Tamura, “Optical characterization of a living body,” O plus E 20, 569–575 (1998; in Japanese).
  24. R. K. Murray, D. K. Granner, P. A. Mayes, V. W. Rodwell, Harper’s Biochemistry (Appleton Lange, Stamford, Conn., 1999), pp. 359–373.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited