OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 20 — Jul. 9, 2004
  • pp: 3999–4006

Dimensionless parameters for the design of optical traps and laser guidance systems

Yaakov K. Nahmias, Bruce Zhi Gao, and David J. Odde  »View Author Affiliations

Applied Optics, Vol. 43, Issue 20, pp. 3999-4006 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (246 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical traps are routinely used for the manipulation of neutral particles. However, optical trap design is limited by the lack of an accurate theory. The generalized Lorenz-Mie theory (GLMT) solves the scattering problem for arbitrary particle size and predicts radial forces accurately. Here we show that the GLMT predicts the observed radial and axial forces in a variety of optical manipulators. We also present a dimensionless parameter β for the prediction of axial forces. Coupled with our correlation for radial escape forces, we now have a set of two simple correlations for the practical design of radiation-force-based systems.

© 2004 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(140.7010) Lasers and laser optics : Laser trapping
(170.6930) Medical optics and biotechnology : Tissue
(220.4830) Optical design and fabrication : Systems design
(290.4020) Scattering : Mie theory
(290.5870) Scattering : Scattering, Rayleigh

Original Manuscript: January 5, 2004
Revised Manuscript: March 30, 2004
Published: July 10, 2004

Yaakov K. Nahmias, Bruce Zhi Gao, and David J. Odde, "Dimensionless parameters for the design of optical traps and laser guidance systems," Appl. Opt. 43, 3999-4006 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Svoboda, S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994). [CrossRef] [PubMed]
  2. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  3. A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971). [CrossRef]
  4. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  5. S. M. Block, L. S. B. Goldstein, B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348, 348–352 (1990). [CrossRef] [PubMed]
  6. J. T. Finer, R. M. Simmons, J. A. Spudich, “Single myosin molecule mechanics—piconewton forces and nanometer steps,” Nature 368, 113–119 (1994). [CrossRef] [PubMed]
  7. M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282, 902–907 (1998). [CrossRef] [PubMed]
  8. B. Schnurr, F. Gittes, F. C. MacKintosh, C. F. Schmidt, “Determining microscopic viscoelasticity in flexible and semiflexible polymer networks from thermal fluctuations,” Macromolecules 30, 7781–7792 (1997). [CrossRef]
  9. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001). [CrossRef] [PubMed]
  10. D. J. Odde, M. J. Renn, “Laser-guided direct writing for applications in biotechnology,” Trends Biotechnol. 17, 385–389 (1999). [CrossRef] [PubMed]
  11. D. J. Odde, M. J. Renn, “Laser-guided direct writing of living cells,” Biotechnol. Bioeng. 67, 312–318 (2000). [CrossRef] [PubMed]
  12. J. E. Molloy, M. J. Padgett, “Lights, action: optical tweezers,” Contemp. Phys. 43, 241–258 (2002). [CrossRef]
  13. Y. Harada, T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996). [CrossRef]
  14. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992). [CrossRef] [PubMed]
  15. G. Roosen, C. Imbert, “Optical levitation by means of two horizontal laser beams: a theoretical and experimental study,” Phys. Lett. 59A, 6–8 (1976).
  16. W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993). [CrossRef]
  17. G. Gouesbet, G. Gréhan, “Generalized Lorenz-Mie theories, from past to future,” Atomization Sprays 10, 277–333 (2000).
  18. G. Gouesbet, J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994). [CrossRef]
  19. K. F. Ren, G. Gouesbet, G. Grehan, “Integral localized approximation in generalized Lorenz-Mie theory,” Appl. Opt. 37, 4218–4225 (1998). [CrossRef]
  20. G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz-Mie theory for spheres,” J. Opt. Soc. Am. A 16, 1641–1650 (1999). [CrossRef]
  21. L. Mees, K. F. Ren, G. Grehan, G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999). [CrossRef]
  22. Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, G. Grehan, “Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres,” Appl. Opt. 36, 5188–5198 (1997). [CrossRef] [PubMed]
  23. Y. K. Nahmias, D. J. Odde, “Analysis of radiation forces in laser trapping and laser-guided direct writing applications,” IEEE J. Quantum Electron. 38, 131–141 (2002). [CrossRef]
  24. T. C. Bakker-Schut, G. Hesselink, B. G. d. Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991). [CrossRef]
  25. A. C. Dogariu, R. Rajagopalan, “Optical traps as force transducers: the effects of focusing the trapping beam through a dielectric interface,” Langmuir 16, 2770–2778 (2000). [CrossRef]
  26. F. Gittes, C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett. 23, 7–9 (1998). [CrossRef]
  27. K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994). [CrossRef]
  28. P. Bartlett, D. Henderson, “Three-dimensional force calibration of a single-beam optical gradient trap,” J. Phys. Condens. Matter 14, 7757–7768 (2002). [CrossRef]
  29. J. P. Barton, “Effects of surface perturbations on the quality and the focused-beam excitation of microsphere resonance,” J. Opt. Soc. Am. A 16, 1974–1980 (1999). [CrossRef]
  30. R. Gómez-Medina, P. San José, A. García-Martín, M. Lester, M. Nieto-Vesperinas, J. J. Sáenz, “Resonant radiation pressure on neutral particles in a waveguide,” Phys. Rev. Lett. 86, 4275–4277 (2001). [CrossRef] [PubMed]
  31. E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1998).
  32. J. N. Fass, D. J. Odde, “Tensile force-dependent neurite elicitation via anti-β1 integrin antibody-coated magnetic beads,” Biophys. J. 85, 623–636 (2003). [CrossRef] [PubMed]
  33. Y. Jiang, B. N. Jahagirdar, R. L. Reinhardt, R. E. Schwartz, C. D. Keenek, X. R. Ortiz-Gonzalezk, M. Reyes, T. Lenvik, T. Lund, M. Blackstad, J. Du, S. Aldrich, A. Lisberg, W. C. Lowk, D. A. Largaespada, C. M. Verfaillie, “Pluripotency of mesenchymal stem cells derived from adult marrow,” Nature 418, 41–49 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited