OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 20 — Jul. 9, 2004
  • pp: 4018–4024

Shrinkage control in a photopolymerizable hybrid solgel material for holographic recording

Gonzalo Ramos, Alberto Álvarez-Herrero, Tomas Belenguer, Francisco del Monte, and David Levy  »View Author Affiliations


Applied Optics, Vol. 43, Issue 20, pp. 4018-4024 (2004)
http://dx.doi.org/10.1364/AO.43.004018


View Full Text Article

Enhanced HTML    Acrobat PDF (185 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the correction of the shrinkage observed during UV postrecording curing in a holographic solgel material that was recently achieved by the use of various chemical formulations for the composition of the hybrid supporting matrix. We found that a chemical modification of the matrix noticeably attenuates the shrinkage (from 1.3% to 0.4% of the material’s initial thickness with the inclusion of just 20% tetramethylorthosilicate), providing a material with improved stability for permanent data storage applications. The holographic properties of samples with different binders are also reported. In addition, a theoretical study has revealed the way by which to compensate for angular deviation in the Bragg condition during UV postrecording by tailoring the binder shrinkage (s), the maximum refractive-index modulation capability of the photosensitive mixture (Δn), or both.

© 2004 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(090.2900) Holography : Optical storage materials
(160.6060) Materials : Solgel
(210.4810) Optical data storage : Optical storage-recording materials

History
Original Manuscript: January 14, 2004
Revised Manuscript: April 5, 2004
Published: July 10, 2004

Citation
Gonzalo Ramos, Alberto Álvarez-Herrero, Tomas Belenguer, Francisco del Monte, and David Levy, "Shrinkage control in a photopolymerizable hybrid solgel material for holographic recording," Appl. Opt. 43, 4018-4024 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-20-4018


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341–348 (2000). [CrossRef]
  2. M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–253 (1999). [CrossRef]
  3. R. Changkakoti, L. R. B. Patterson, C. Dreze, A. K. Ghosh, “Polymer holograms for neural network application: an experimental study,” in Photonics for Space Environments III, E. W. Taylor, ed., Proc. SPIE2482, 213–223 (1995). [CrossRef]
  4. V. Weiss, A. A. Friesem, V. A. Krongauz, “Organic materials for real-time holographic recording,” J. Imaging Sci. Technol. 41, 371–382 (1997).
  5. M. G. Schnoes, L. Dhar, M. L. Schilling, S. S. Patel, P. Wiltzius, “Photopolymer-filled nanoporous glass as a dimensionally stable holographic medium,” Opt. Lett. 24, 658–660 (1999). [CrossRef]
  6. J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. Vega-Cantu, V. L. Colvin, “Effect of film thickness on the performance of photopolymers as holographic recording materials,” Appl. Opt. 39, 2353–2358 (2000). [CrossRef]
  7. H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000). [CrossRef]
  8. L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998). [CrossRef]
  9. T. J. Trentler, J. E. Boyd, V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000). [CrossRef]
  10. S. J. Zilker, “Holographic data storage—the materials challenge,” Chem. Phys. Chem. 3, 333–334 (2002). [CrossRef]
  11. C. J. Brinker, G. W. Scherer, Sol Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic, San Diego, Calif., 1990).
  12. F. del Monte, P. Cheben, C. P. Grover, J. D. Mackenzie, “Preparation and optical characterization of thick-film zirconia and titania ormosils,” J. Sol-Gel Sci. Technol. 15, 73–85 (1999). [CrossRef]
  13. P. Cheben, T. Belenguer, A. Núñez, D. Levy, F. del Monte, “Holographic diffraction gratings recording in organically modified silica gels,” Opt. Lett. 21, 1857–1859 (1996). [CrossRef] [PubMed]
  14. W. S. Colburn, K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636–1641 (1971). [CrossRef] [PubMed]
  15. T. Belenguer, P. Cheben, E. M. Moreno, A. Núñez, M. Ulibarrena, F. del Monte, D. Levy, “Bragg gratings in ormocers,” in Sol-Gel Optics IV, B. S. Dunn, J. D. Mackenzie, E. J. A. Pope, H. K. Schmidt, M. Yamane, eds., Proc. SPIE3136, 86–93 (1997). [CrossRef]
  16. P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001). [CrossRef]
  17. F. del Monte, G. Ramos, T. Belenguer, D. Levy, “The sol-gel approach for the preparation of holographic and photorefractive materials,” in Organic Photorefractive and Photosensitive Materials for Holographic Applications, K. Meerholz, ed., Proc. SPIE4802, 51–64 (2002). [CrossRef]
  18. G. Ramos, A. Álvarez-Herrero, T. Belenguer, F. del Monte, D. Levy, “Photopolymerizable hybrid sol-gel material for holographic recording,” in Organic Photorefractive and Photosensitive Materials for Holographic Applications II, K. Meerholz, ed., Proc. SPIE5216, 116–126 (2003). [CrossRef]
  19. S. Blaya, R. Mallavia, L. Carretero, A. Fimia, R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628–1630 (1998). [CrossRef]
  20. R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, Orlando, Fla., 1971).
  21. P. Hariharan, Optical Holography: Principles, Techniques and Applications (Cambridge U. Press, Cambridge, UK, 1984).
  22. G. L. Steckman, I. Solomatine, G. Zhou, D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23, 1310–1312 (1998). [CrossRef]
  23. H. Imai, K. Awazu, M. Yasumori, H. Onuki, H. Hirashima, “Densification of sol-gel thin films by ultraviolet and vacuum ultraviolet irradiations,” J. Sol-Gel Sci. Technol. 8, 365–369 (1997). [CrossRef]
  24. R. R. A. Syms, Practical Volume Holography (Oxford U. Press, New York, 1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited