OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 20 — Jul. 9, 2004
  • pp: 4025–4032

Relevance of mask-roughness-induced printed line-edge roughness in recent and future extreme-ultraviolet lithography tests

Patrick P. Naulleau  »View Author Affiliations


Applied Optics, Vol. 43, Issue 20, pp. 4025-4032 (2004)
http://dx.doi.org/10.1364/AO.43.004025


View Full Text Article

Enhanced HTML    Acrobat PDF (689 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The control of line-edge roughness (LER) of features printed in photoresist poses significant challenges to next-generation lithography techniques such as extreme-ultraviolet (EUV) lithography. Achieving adequately low LER levels requires accurate resist characterization as well as the ability to separate resist effects from other potential contributors to LER. One potentially significant contributor to LER arises from roughness on the mask coupling to speckle in the aerial image and consequently to LER in the printed image. Here I numerically study mask surface roughness and phase roughness to resist LER coupling both as a function of illumination coherence and defocus. Moreover, the potential consequences of this mask effect for recent EUV lithography experiments is studied through direct comparison with experimental through-focus printing data collected at a variety of coherence settings. Finally, the effect that mask roughness will play in upcoming 0.3-numerical-aperture resist testing is considered.

© 2004 Optical Society of America

OCIS Codes
(030.5770) Coherence and statistical optics : Roughness
(030.6140) Coherence and statistical optics : Speckle
(110.3960) Imaging systems : Microlithography
(110.4980) Imaging systems : Partial coherence in imaging
(260.7200) Physical optics : Ultraviolet, extreme

History
Original Manuscript: February 2, 2004
Revised Manuscript: April 4, 2004
Published: July 10, 2004

Citation
Patrick P. Naulleau, "Relevance of mask-roughness-induced printed line-edge roughness in recent and future extreme-ultraviolet lithography tests," Appl. Opt. 43, 4025-4032 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-20-4025


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Stulen, D. Sweeney, “Extreme ultraviolet lithography,” IEEE J. Quantum Electron. 35, 694–699 (1999). [CrossRef]
  2. H. Meiling, J. Benschop, R. Hartman, P. Kürz, P. Høghøj, R. Geyl, N. Harned, “EXSTATIC: ASML’s α-tool development for EUVL,” in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE4688, 52–63 (2002). [CrossRef]
  3. K. Hamamoto, T. Watanabe, H. Hada, H. Komano, S. Kishimura, S. Okazaki, H. Kinoshita, “Fine pattern replication on 10 × 10-mm exposure area using the ETS-1 laboratory tool in HIT,” in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE4688, 664–671 (2002). [CrossRef]
  4. International Technology Roadmap for Semiconductors, 2001 ed., http://public.itrs.net/ .
  5. R. Brainard, C. Henderson, J. Cobb, V. Rao, J. Mackevich, U. Okoroanyanwu, S. Gunn, J. Chambers, S. Connolly, “Comparison of the lithographic properties of positive resists upon exposure to deep- and extreme-ultraviolet radiation,” J. Vac. Sci. Technol. B 17, 3384–3389 (1999). [CrossRef]
  6. M. Shumway, S. Lee, C. Cho, P. Naulleau, K. Goldberg, J. Bokor, “Extremely fine-pitch printing with a 10× Schwarzschild optic at extreme ultraviolet wavelengths,” in Emerging Lithographic Technologies V, E. A. Dobisz, ed., Proc. SPIE4343, 357–362 (2001). [CrossRef]
  7. W. Li, H. Solak, F. Cerrina, “EUV nanolithography: sub-50 nm L/S,” in Emerging Lithographic Technologies IV, E. A. Dobisz, ed., Proc. SPIE3997, 794–798 (2000). [CrossRef]
  8. T. Watanabe, H. Kinoshita, A. Miyafuji, S. Irie, S. Shirayone, S. Mori, E. Yano, H. Hada, K. Ohmori, H. Komano, “Lithographic performance and optimization of chemically amplified single-layer resists for EUV lithography,” in Emerging Lithographic Technologies IV, E. A. Dobisz, ed., Proc. SPIE3997, 600–607 (2000). [CrossRef]
  9. J. Goldsmith, K. Berger, D. Bozman, G. Cardinale, D. Folk, C. Henderson, D. O’Connell, A. Ray-Chaudhuri, K. Stewart, D. Tichenor, H. Chapman, R. Gaughan, R. Hudyma, C. Montcalm, E. Spiller, J. Taylor, J. Williams, K. Goldberg, E. Gullikson, P. Naulleau, J. Cobb, “Sub-100-nm lithographic imaging with the EUV 10× Microstepper,” in Emerging Lithographic Technologies III, Y. Vladimirsky, ed., Proc. SPIE3676, 264–271 (1999). [CrossRef]
  10. P. Naulleau, K. Goldberg, E. Anderson, D. Attwood, P. Batson, J. Bokor, P. Denham, E. Gullikson, B. Harteneck, B. Hoef, K. Jackson, D. Olynick, S. Rekawa, F. Salmassi, K. Blaedel, H. Chapman, L. Hale, P. Mirkarimi, R. Soufli, E. Spiller, D. Sweeney, J. Taylor, C. Walton, D. O’Connell, R. Stulen, D. Tichenor, C. Gwyn, P. Yan, G. Zhang, “Sub-70-nm EUV lithography at the Advanced Light Source Static Microfield Exposure Station using the ETS Set-2 Optic,” J. Vac. Sci. Technol. B 20, 2829–2833 (2002). [CrossRef]
  11. P. Naulleau, G. Gallatin, “The line-edge roughness transfer function and its application to determining mask effects in EUV resist characterization,” Appl. Opt. 42, 3390–3397 (2003). [CrossRef] [PubMed]
  12. N. Beaudry, T. Milster, “Effects of object roughness on partially coherent image formation,” Opt. Lett. 25, 454–456 (2000). [CrossRef]
  13. N. Beaudry, T. Milster, “Effects of mask roughness and condenser scattering in EUVL systems,” in Emerging Lithographic Technologies III, Y. Vladimirsky, ed., Proc. SPIE3676, 653–662 (1999). [CrossRef]
  14. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 7, pp. 286–360.
  15. PROLITH is a registered trademark of KLA-Tencor Corporation, 160 Rio Robles, San Jose, Calif. 95134.
  16. SOLID-C is a registered trademark of SIGMA-C GmbH, Thomas-Dehler-Str. 9, 81737 München, Germany.
  17. J. H. Underwood, T. W. Barbee, “Layered synthetic microstructures as Bragg diffractors for X rays and extreme ultraviolet: theory and predicted performance,” Appl. Opt. 20, 3027–3034 (1981). [CrossRef] [PubMed]
  18. D. Stearns, “Stochastic model for thin film growth and erosion,” Appl. Phys. Lett. 62, 1745–1747 (1993). [CrossRef]
  19. D. Stearns, E. Gullikson, “Nonspecular scattering from extreme ultraviolet multilayer coatings,” Physica B 283, 84–91 (2000). [CrossRef]
  20. Z. Zhengrong, K. Lucas, J. Cobb, S. Hector, A. Strojwas, “Rigorous EUV mask simulator using 2D and 3D waveguide methods,” in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE5037, 494–503 (2003). [CrossRef]
  21. A. Erdmann, C. Kalus, T. Schmoller, A. Wolter, “Efficient simulation of light diffraction from three-dimensional EUV masks using field decomposition techniques,” in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE5037, 482–493 (2003). [CrossRef]
  22. T. Pistor, T. Y. Deng, A. Neureuther, “Extreme ultraviolet mask defect simulation: Low-profile defects,” J. Vac. Sci. Technol. B 18, 2926–2929 (2000). [CrossRef]
  23. E. Gullikson, C. Cerjan, D. Stearns, P. Mirkarimi, D. Sweeney, “Practical approach for modeling extreme ultraviolet lithography mask defects,” J. Vac. Sci. Technol. B 20, 81–86 (2002). [CrossRef]
  24. K. Goldberg, P. Naulleau, J. Bokor, H. Chapman, “Testing EUV optics with visible-light and EUV interferometry,” J. Vac. Sci. Technol. B 20, 2834–2839 (2002). [CrossRef]
  25. D. Tichenor, W. Replogle, S. Lee, W. Ballard, G. Kubiak, L. Klebanoff, J. Goldsmith, J. Wronosky, L. Hale, H. Chapman, J. Taylor, K. Goldberg, P. Naulleau, “Performance upgrades in the EUV engineering test stand,” in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE4688, 72–86 (2002). [CrossRef]
  26. D. O’Connell, S. Lee, D. Tichenor, W. Ballard, L. Bernardez, J. Goldsmith, S. Haney, K. Jefferson, T. Johnson, A. Leung, W. Replogle, J. Bjorkholm, E. Panning, P. Naulleau, H. Chapman, S. Wurm, G. Kubiak, C. Gwyn, “Lithographic characterization of improved projection optics in the EUVL engineering test stand,” in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE5037, 83–94 (2003). [CrossRef]
  27. D. W. Sweeney, R. Hudyma, H. N. Chapman, D. Shafer, “EUV optical design for a 100-nm CD imaging system,” in Emerging Lithographic Technologies II, Y. Vladimirsky, ed., Proc. SPIE3331, 2–10 (1998). [CrossRef]
  28. P. Naulleau, K. Goldberg, E. Anderson, J. Bokor, B. Harteneck, K. Jackson, D. Olynick, F. Salmassi, S. Baker, P. Mirkarimi, E. Spiller, C. Walton, D. O’Connell, P. Yan, G. Zhang, “Printing-based performance analysis of the ETS Set-2 optic using a synchrotron exposure station with variable sigma,” J. Vac. Sci. Technol. B 21, 2697–2700 (2003). [CrossRef]
  29. J. Taylor, D. Sweeney, R. Hudyma, L. Hale, T. Decker, G. Kubiak, W. Sweatt, N. Wester, “EUV Microexposure Tool (MET) for near-term development using a high NA projection system,” Proceedings of the 2nd International EUVL Workshop (International Sematech, Austin, Tex., 2000).
  30. R. Hudyma, J. Taylor, D. Sweeney, L. Hale, W. Sweatt, N. Wester, “E-D characteristics and aberration sensitivity of the Microexposure Tool (MET),” Proceedings of the 2nd International EUVL Workshop (International Sematech, Austin, Tex., 2000).
  31. S. Hector, “EUVL masks: requirements and potential solutions,” in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE4688, 134–149 (2002). [CrossRef]
  32. P. Mirkarimi, E. Spiller, D. Stearns, V. Sperry, S. Baker, “An ion-assisted Mo-Si deposition process for planarizing reticle substrates for extreme ultraviolet lithography,” IEEE J. Quantum Electron. 37, 1514–1516 (2001). [CrossRef]
  33. T. Ogawa, M. Ito, H. Yamanashi, H. Hoko, E. Hoshino, S. Okazaki, “Simulation studies of roughness-smoothing effect of molybdenum/silicon multilayer coating based on resputtering model,” in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE4688, 716–724 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited