OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 20 — Jul. 9, 2004
  • pp: 4041–4054

Reducing variability that is due to secondary pigments in the retrieval of chlorophyll a concentration from marine reflectance: a case study in the western equatorial Pacific Ocean

Lydwine Gross, Robert Frouin, Cécile Dupouy, Jean Michel André, and Sylvie Thiria  »View Author Affiliations

Applied Optics, Vol. 43, Issue 20, pp. 4041-4054 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (289 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A neural network is developed to retrieve chlorophyll a concentration from marine reflectance by use of the five visible spectral bands of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The network, dedicated to the western equatorial Pacific Ocean, is calibrated with synthetic data that vary in terms of atmospheric content, solar zenith angle, and secondary pigments. Pigment variability is based on in situ data collected in the study region and is introduced through nonlinear modeling of phytoplankton absorption as a function of chlorophyll a, b, and c and photosynthetic and photoprotectant carotenoids. Tests performed on simulated yet realistic data show that chlorophyll a retrievals are substantially improved by use of the neural network instead of classical algorithms, which are sensitive to spectrally uncorrelated effects. The methodology is general, i.e., is applicable to regions other than the western equatorial Pacific Ocean.

© 2004 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics

Original Manuscript: June 23, 2003
Revised Manuscript: February 26, 2004
Published: July 10, 2004

Lydwine Gross, Robert Frouin, Cécile Dupouy, Jean Michel André, and Sylvie Thiria, "Reducing variability that is due to secondary pigments in the retrieval of chlorophyll a concentration from marine reflectance: a case study in the western equatorial Pacific Ocean," Appl. Opt. 43, 4041-4054 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. B. Field, M. J. Behrenfeld, J. T. Randerson, P. Falkowski, “Primary production of the biosphere: integrating terrestrial and oceanic components,” Science 281, 237–240 (1998). [CrossRef] [PubMed]
  2. International Ocean-Colour Coordinating Group (IOCCG) , “Minimum requirements for an operational, ocean-colour sensor for the open ocean,” IOCCG Rep. 1 (Scientific Committee on Oceanic Research, Villefranche sur Mer, France, 1998).
  3. H. Schiller, R. Doerffer, “Neural network for emulation of an inverse model—operational derivation of Case II properties from MERIS data,” Int. J. Remote Sens. 20, 1735–1746 (1999). [CrossRef]
  4. L. E. Keiner, C. W. Brown, “Estimating oceanic chlorophyll concentrations with neural networks,” Int. J. Remote Sens. 20, 189–194 (1999). [CrossRef]
  5. L. Gross, S. Thiria, R. Frouin, B. G. Mitchell, “Artificial neural network for modeling the transfer function between marine reflectance and phytoplankton pigment concentration,” J. Geophys. Res. 105, 3483–3495 (2000). [CrossRef]
  6. H. R. Gordon, O. B. Brown, R. H. Ewans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988). [CrossRef]
  7. A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001). [CrossRef]
  8. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
  9. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “An overview of SeaWiFS and ocean color,” NASA Tech. Memo. 104566, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992), Vol. 1.
  10. C. D. Mobley, Light and Water (Academic, San Diego, Calif., 1994).
  11. J. S. Cleveland, “Regional models for phytoplankton absorption in function of chlorophyll a concentration,” J. Geophys. Res. 100, 13,333–13,344 (1995). [CrossRef]
  12. A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (Case 1) waters: analysis and implication for bio-optical models,” J. Geophys. Res. 103, 31,033–31,044 (1998). [CrossRef]
  13. R. A. Reynolds, D. Stramski, B. G. Mitchell, “A chlorophyll-dependent semianalytical reflectance model derived from field measurements of absorption and backscattering coefficients within the southern ocean,” J. Geophys. Res. 106, 7125–7138 (2001). [CrossRef]
  14. A. Morel, Y. H. Ahn, “Optics of heterotrophic nanoflagelattes and ciliates: a tentative assessment of their scattering role in oceanic waters compared with those of bacterial and algal cells,” J. Mar. Res. 49, 1–26 (1991). [CrossRef]
  15. D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991). [CrossRef]
  16. H. Loisel, A. Morel, “Light scattering and chlorophyll concentration in Case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998). [CrossRef]
  17. L. N. M. Duysens, “The flattening of the absorption spectrum of suspensions, as compared to that of solutions,” Biochim. Biophys. Acta 19, 1–12 (1956). [CrossRef] [PubMed]
  18. A. Morel, A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep Sea Res. I 28A, 1375–1393 (1981). [CrossRef]
  19. S. Sathyendranath, L. Lazzara, L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr. 32, 403–415 (1987). [CrossRef]
  20. A. Bricaud, D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35, 562–582 (1990). [CrossRef]
  21. V. Stuart, S. Sathyendranath, T. Platt, H. Maas, B. D. Irwin, “Pigments and species composition of natural phytoplankton populations: effect on the absorption spectra,” J. Plankton. Res. 20, 187–217 (1998). [CrossRef]
  22. A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13,321–13,332 (1995). [CrossRef]
  23. R. R. Bidigare, M. E. Ondrusek, J. H. Morrow, D. A. Kiefer, “In vivo absorption properties of algal pigments,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 290–302 (1990).
  24. N. Hoepffner, S. Sathyendranath, “Effect of pigment composition on absorption properties of phytoplankton,” Mar. Ecol. Prog. Ser. 73, 11–23 (1991). [CrossRef]
  25. J. H. Morrow, W. S. Chamberlin, D. A. Kiefer, “A two-component description of spectral absorption by marine particles,” Limnol. Oceanogr. 34, 1500–1509 (1989). [CrossRef]
  26. R. R. Bidigare, J. H. Morrow, D. A. Kiefer, “Derivative analysis of spectral absorption by photosynthetic pigments in the western Sargasso Sea,” J. Mar. Res. 47, 323–341 (1989). [CrossRef]
  27. J. E. O’Reilly, S. Maritorena, M. C. O’Brien, D. A. Siegel, D. Toole, D. Menzies, R. C. Smith, J. L. Mueller, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Müller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, M. Culver, “SeaWiFS postlaunch calibration and validation analyses. 3,” NASA Tech. Memo. 2000-206892, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000), Vol. 11.
  28. D. K. Clark, “Bio-optical algorithms, Case 1 waters,” MODIS Algorithm Theoretical Basis Doc. 18 (National Oceanic and Atmospheric Administration, National Environmental Satellite Service, Washington, D.C., 1999).
  29. K. L. Carder, F. R. Chen, Z. Lee, K. Hawes, J. P. Cannizzaro, “Case 2 chlorophyll a,” MODIS Algorithm Theoretical Basis Doc. 19 (College of Marine Science, University of South Florida, St. Petersburg, Fl., 2003).
  30. C. Dupouy, J. Neveux, J. M. Andre, “Spectral absorption coefficient of photosynthetically active pigments in the equatorial Pacific Ocean (165E-150W),” Deep Sea Res. II 44, 1881–1906 (1997). [CrossRef]
  31. J. W. Murray, R. Le Borgne, Y. Dandonneau, “JGOFS studies in the equatorial Pacific,” Deep Sea Res. II 44, 1759–1763 (1997). [CrossRef]
  32. Y. Dandonneau, “Introduction to special section: biochemical conditions in the equatorial Pacific in late 1994,” J. Geophys. Res. 104, 3291–3295 (1999). [CrossRef]
  33. A. Bricaud, C. S. Roesler, J. S. Parslow, J. Ishizaka, “Bio-optical studies during the JGOFS-equatorial Pacific program: a contribution to the knowledge of the equatorial system,” Deep Sea Res. II 49, 2583–2599 (2002). [CrossRef]
  34. W. H. Thomas, “Anomalous nutrient-chlorophyll interrelationships in the off-shore eastern tropical Pacific Ocean,” J. Mar. Res. 37, 327–335 (1979).
  35. K. Allali, A. Bricaud, H. Claustre, “Spatial variations in the chlorophyll-specific absorptions of phytoplankton and photosynthetically active pigments in the equatorial Pacific,” J. Geophys. Res. 102, 12,412–12,423 (1997). [CrossRef]
  36. C. Dupouy, J. Siméon, “An example of in vivo spectral absorption coefficient of procaryotes and eucaryotes in the equatorial upwelling (0–177 W) of the Pacific Ocean during La Niña condition,” in Aquatic Sciences Meeting, Program and Abstracts, J. J. Cole, J. T. Hollibaugh, eds. (American Society of Limnology and Oceanography, Santa Fe, N. Mex.1997), p. 152.
  37. C. Dupouy, H. Loisel, J. Neveux, S. L. Brown, C. Moulin, J. Blanchot, A. Le Bouteiller, M. R. Landry, “Microbial absorption and backscattering coefficients from in situ and POLDER satellite data during an El Niño Southern Oscillation cold phase in the equatorial Pacific (180°),” J. Geophys. Res. 108, 8138, 10.1029/2001JC001298(2003). [CrossRef]
  38. C. Dupouy, J. Neveux, A. Subramaniam, M. Mulholland, L. Campbell, L. Montoya, J. E. Carpenter, D. Capone, “SEAWiFS captures Trichodesmium blooms in the southwestern tropical Pacific,” EOS Trans. Am. Geophys. Union 81, 2–16 (2000). [CrossRef]
  39. J. M. André, “Ocean color remote-sensing and the subsurface vertical structure of phytoplankton pigments,” Deep Sea Res. 39, 763–779 (1991).
  40. G. Mitchell, “Algorithm for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT),” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 136–147 (1990). [CrossRef]
  41. M. Kishino, M. Takahashi, N. Okami, S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 35, 634–642 (1985).
  42. M. Kishino, N. Okami, M. Takahashi, S. Ichimura, “Light utilization efficiency and quantum yield of phytoplankton in a thermally stratified sea,” Limnol. Oceanogr. 31, 557–566 (1986). [CrossRef]
  43. F. Vidussi, H. Claustre, J. H. Bustillos-Guzman, C. Caillau, J. C. Marty, “Rapid HPLC method for determination of phytoplankton chemotaxinomic pigments: separation of chlorophyll a from divinyl-chlorophyll a and zeaxanthin from lutein,” J. Plankton Res. 18, 2377–2382 (1996). [CrossRef]
  44. J. Neveux, F. Lantoine, “Spectrofluorometric assay of chlorophylls and phaeopigments using the least squares approximation technique,” Deep Sea Res. 40, 1747–1765 (1993). [CrossRef]
  45. L. Gross, “Inversion des mesures satellitales de la couleur de l’océan à l’aide des réseaux de neurones,” Ph.D. dissertation (Université de Versailles Saint Quentin, Versailles, France, 2001).
  46. I. T. Jolliffe, Principal Component Analysis (Springer-Verlag, New York, 1986). [CrossRef]
  47. H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975). [CrossRef] [PubMed]
  48. L. Prieur, “Transfert radiatif dans les eaux de mer: application a la détermination des paramètres optiques caractérisant leurs substances dissoutes et particulaires,” State thesis (Université Pierre et Marie Curie, Paris, 1976).
  49. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977). [CrossRef]
  50. H. R. Gordon, “Dependence of the diffuse reflectance of natural waters on the Sun angle,” Limnol. Oceanogr. 34, 1484–1489 (1989). [CrossRef]
  51. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991). [CrossRef] [PubMed]
  52. W. W. Gregg, K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35, 1657–1675 (1990). [CrossRef]
  53. M. Chami, E. Dilligeard, R. Santer, “Radiative transfer model for the computation of radiance and polarization in an ocean-atmosphere system: polarization properties of suspended matter for remote sensing,” Appl. Opt. 40, 2398–2416 (2001). [CrossRef]
  54. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (Case 1 waters),” J. Geophys. Res. 93, 10,749–10,768 (1988). [CrossRef]
  55. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, eds. (Academic, New York, 1974), pp. 1–24.
  56. R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  57. A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981). [CrossRef]
  58. L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981). [CrossRef]
  59. R. Doerffer, J. Fisher, “Concentrations of chlorophyll, suspended matter, and gelstoff in Case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7457–7466 (1994). [CrossRef]
  60. C. S. Roesler, M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, 13,279–13,294 (1995).
  61. F. E. Hoge, P. E. Lyon, “Satellite” retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16,631–16,648 (1996). [CrossRef]
  62. S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18,607–18,625 (1997). [CrossRef]
  63. H. Loisel, D. Stramski, “Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39, 3001–3011 (2000). [CrossRef]
  64. P. Cipollini, C. Giovanni, D. Marco, G. Raffaelle, “Retrieval of sea water optically active parameters from hyperspectral data by means of generalized radial basis function neural networks,” IEEE Trans. Geosci. Remote Sens. 39, 1508–1524 (2001). [CrossRef]
  65. Z. P. Lee, K. L. Carder, R. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 1291–1201 (2002). [CrossRef]
  66. C. M. Bishop, “Training with noise is equivalent to Tikhonov regularization,” Neural Comput. 7, 108–116 (1995). [CrossRef]
  67. C. M. Bishop, Neural Networks for Pattern Recognition (Clarendon, Oxford, 1995).
  68. M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised learning,” Neural Networks 6, 525–533 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited