OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 20 — Jul. 9, 2004
  • pp: 4070–4079

Atmospheric Optical Turbulence Over Land in Middle East Coastal Environments: Prediction Modeling and Measurements

Sergey Bendersky, Norman S. Kopeika, and Natan Blaunstein  »View Author Affiliations


Applied Optics, Vol. 43, Issue 20, pp. 4070-4079 (2004)
http://dx.doi.org/10.1364/AO.43.004070


View Full Text Article

Acrobat PDF (345 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Beam intensity scintillations, characterized by a refractive-index structure parameter and caused by variations of macrometeorological features of the coastal atmosphere such as air temperature, wind speed and direction, and relative humidity, are examined theoretically and experimentally. In our theoretical analysis we present two well-known models considered separately for over-water and over-land atmospheric optical communication or imaging channels. By means of comparison with our experiments carried out in midland coastal environments in southern and northern Israel, we show the limitations of the models to predict the refractive-index structure <i>C</i><sub><i>n</i></sub><sup>2</sup> parameter for both daytime and nighttime turbulent atmospheres in different coastal zone meteorological conditions. We also present an extension of an existing model with two different practical applications that, as is shown experimentally, can be a good predictor of <i>C</i><sub><i>n</i></sub><sup>2</sup> for optical atmospheric paths over midland coastal zones.

© 2004 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.7060) Atmospheric and oceanic optics : Turbulence
(280.7060) Remote sensing and sensors : Turbulence

Citation
Sergey Bendersky, Norman S. Kopeika, and Natan Blaunstein, "Atmospheric Optical Turbulence Over Land in Middle East Coastal Environments: Prediction Modeling and Measurements," Appl. Opt. 43, 4070-4079 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-20-4070


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Dion and P. B. W. Schwering, “On the analysis of atmospheric effects on electro-optical sensors in the marine surface layer,” in Proceedings of the Infrared Information Symposia-Second NATO-IRIS Joint Symposium (Infrared Information Analysis Center, Environmental Research Institute of Michigan, Ann Arbor, Mich., 1997), Vol. 41, pp. 305–322.
  2. A. Berk, L. S. Bernstein, and D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” AFGL Tech. Rep. GL-TR-89–0122 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1989).
  3. R. R. Beland, “Propagation through atmospheric optical turbulence,” in Atmospheric Propagation of Radiation, Vol. 2, F. G. Smith, ed. (SPIE Press, Bellingham, Wash., 1993), pp. 157–232.
  4. C. W. Fairall, K. L. Davidson, and G. E. Schachter, “Meteorological models for optical properties in the marine atmospheric boundary layer,” Opt. Eng. 21, 847–857 (1982).
  5. W. B. Miller and J. C. Ricklin, “IMTURB: a module for imaging through optical turbulence,” Rep. ASL-TR-0221–27 (U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1990).
  6. V. Thiermann and A. Kohnle, “A simple model for the structure constant of temperature fluctuations in the lower atmosphere,” J. Phys. D 21, S37–S40 (1988).
  7. D. Sadot and N. S. Kopeika, “Forecasting optical turbulence strength on basis of macroscale meteorology and aerosols: models and validation,” Opt. Eng. 31, 200–212 (1992).
  8. W. J. Stewart, “A propagation model for Gaussian beam waves in clear air turbulence,” Rep. ASL-CR-88–0001–2 (U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1988).
  9. D. Sadot, D. Shemtov, and N. S. Kopeika, “Theoretical and experimental investigation of image quality through an inhomogeneous turbulent medium,” Waves Random Media 4, 177–189 (1994).
  10. D. L. Hutt, “Modeling and measurements of atmospheric optical turbulence over land,” Opt. Eng. 38, 1288–1295 (1999).
  11. J. Piazzola and S. Despiau, “The vertical variation of extinction and atmospheric transmission due to aerosol particles close above the sea surface in Mediterranean coastal zone,” Opt. Eng. 37, 1684–1695 (1998).
  12. D. R. Jensen, S. G. Gathman, C. R. Leisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, and K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
  13. M. Tanguy, H. Bonhommet, M. L. Autric, and P. Vigliano, “Correlation between the aerosol profiles measurements, the meteorological conditions, and the atmospheric IR transmission in a Mediterranean marine atmosphere,” in Propagation Engineering: Fourth in a Series, L. R. Bissonnette and W. B. Miller, eds., Proc. SPIE 1487, 172–184 (1991).
  14. J. Piazzola, A. M. J. van Eijk, and G. de Leeuw, “Extension of the Navy aerosol model to coastal areas,” Opt. Eng. 39, 1620–1631 (2000).
  15. S. Bendersky, N. Kopeika, and N. Blaunstein, “Effects of attenuation of 1.064-μm optical waves by humid aerosols and fog over horizontal atmospheric communication links,” Opt. Eng. 43, 539–552 (2004).
  16. S. G. Gathman and M. H. Smith, “Nature of surf-generated aerosol and its effect on electro-optical systems,” in Propagation and Imaging through the Atmosphere, L. R. Bissonnette and C. Dainty, eds., Proc. SPIE 3125, 2–13 (1997).
  17. N. S. Kopeika, System Engineering Approach to Imaging, Vol. PM38 of the Press Monograph Series (SPIE Press, Bellingham, Wash., 1998).
  18. G. R. Ochs, “Measurements of the refractive index structure parameter by incoherent aperture scintillation techniques,” in Propagation Engineering, N. S. Kopeika and W. B. Miller, eds., Proc. SPIE 1115, 107–115 (1989).
  19. J. Laurent, G. Rousset, G. Ferthin, J. F. Carlin, A. Kohnle, V. Thiermann, and M. Drumez, “Comparison between different techniques of turbulence measurements for horizontal path,” in Propagation Engineering, N. S. Kopeika and W. B. Miller, eds., Proc. SPIE 1115, 116–123 (1989).
  20. S. F. Clifford, “The classical theory of wave propagation in a turbulent medium,” in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer-Verlag, New York, 1978).
  21. G. R. Ochs, R. R. Bergman, and J. R. Snyder, “Laser beam scintillation over horizontal paths from 5.5 to 145 kilometers,” J. Opt. Soc. Am. 59, 231–234 (1969).
  22. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 8.
  23. R. S. Laurence, “A review of the optical effects of the clear turbulent atmosphere,” in Imaging through the Atmosphere, J. C. Wyant, ed., Proc. SPIE 75, 2–8 (1976).
  24. C. A. Friehe, J. C. La Rue, F. H. Champagne, C. H. Gibson, and G. F. Dreyer, “Effects of temperature and humidity fluctuations on the optical refractive index in the marine boundary layer,” J. Opt. Soc. Am. 65, 1502–1511 (1975).
  25. A. Ishimaru, Wave Propagation and Scattering in Random Media Appendix C (Academic, New York, 1978), Chap. 20.
  26. R. L. Fante, “Electric beam propagation in turbulent media,” Proc. IEEE 63, 1669–1688 (1975).
  27. V. I. Tatarski, “The effects of the turbulent atmosphere on wave propagation,” NOAA Rep. TT-68–50464 (U.S. Department of Commerce, Springfield, Va., 1971).
  28. V. Thiermann and A. Kohnle, “Modelling of optically and IR effective atmospheric turbulence,” AGARD CP-454, Paper 19 (NATO, Brussels, 1989).
  29. A. S. Monin and A. M. Obukhov, “Basic law of turbulent mixing near the graund,” Trans. Geophys. Inst. Akad. Nauk USSR 24(151), 163–187 (1954).
  30. J. C. Wyngaard, “On surface layer turbulence,” in Workshop on Micrometeorology, D. A. Haugen, ed. (American Meteorological Society, Boston, Mass., 1973), pp. 101–148.
  31. V. Thiermann and H. Grassl, “The measurement of turbulent surface layer fluxes by use of bichromatic scintillation,” Boundary-Layer Meteorol. 58, 367–389 (1992).
  32. J. A. Businger, J. C. Wyngaard, Y. Izumi, and E. F. Bradley, “Flux-profile relationships in the atmospheric surface layer,” J. Atmos. Sci. 28, 181–189 (1971).
  33. A. A. M. Holstag and A. P. Van Ulden, “A simple scheme for daytime estimates of the surface fluxes from weather data,” J. Clim. Appl. Meteorol. 22, 517–529 (1983).
  34. R. B. Stull, Introduction to Boundary Layer Meteorology (Kluwer Academic, Dordrecht, The Netherlands, 1988).
  35. N. Ben-Yosef, E. Tirosh, A. Weitz, and E. Pinsky, “Refractive-index structure constant dependence on height,” J. Opt. Soc. Am. 69, 1616–1618 (1979).
  36. N. S. Kopeika, I. Kogan, R. Israeli, and I. Dinstein, “Prediction of image quality through atmosphere as a function of weather forecast,” in Propagation Engineering, N. S. Kopeika and W. B. Miller, eds., Proc. SPIE 1115, 266–277 (1989).
  37. N. S. Kopeika, I. Kogan, R. Israeli, and I. Dinstein, “Prediction of image propagation quality through the atmosphere: the dependence of atmospheric modulation transfer function on weather,” Opt. Eng. 29, 1427–1438 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited