OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 21 — Jul. 20, 2004
  • pp: 4133–4141

Three-dimensional optical tomographic imaging of supersonic jets through inversion of phase data obtained through the transport-of-intensity equation

Hemanth Thayyullathil, Rajesh Langoju, Renganathan Padmaram, R. Mohan Vasu, Rajan Kanjirodan, and Lalit M. Patnaik  »View Author Affiliations

Applied Optics, Vol. 43, Issue 21, pp. 4133-4141 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1837 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report experimental results of quantitative imaging in supersonic circular jets by using a monochromatic light probe. An expanding cone of light interrogates a three-dimensional volume of a supersonic steady-state flow from a circular jet. The distortion caused to the spherical wave by the presence of the jet is determined through our measuring normal intensity transport. A cone-beam tomographic algorithm is used to invert wave-front distortion to changes in refractive index introduced by the flow. The refractive index is converted into density whose cross sections reveal shock and other characteristics of the flow.

© 2004 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval
(100.6950) Image processing : Tomographic image processing
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6960) Medical optics and biotechnology : Tomography

Original Manuscript: September 5, 2003
Revised Manuscript: April 27, 2004
Published: July 20, 2004

Hemanth Thayyullathil, Rajesh Langoju, Renganathan Padmaram, R. Mohan Vasu, Rajan Kanjirodan, and Lalit M. Patnaik, "Three-dimensional optical tomographic imaging of supersonic jets through inversion of phase data obtained through the transport-of-intensity equation," Appl. Opt. 43, 4133-4141 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Kolmogorov, “A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reyolds number,” J. Fluid Mech. 13, 82–85 (1962). [CrossRef]
  2. B. Chhabra, R. V. Jensen, “Direct determination of the f(α) singularity spectrum,” Phy. Rev. Lett. 62, 1327–1330 (1989). [CrossRef]
  3. C. Meneveau, K. R. Srinivasan, “The multifractal nature of turbulent energy dissipation,” J. Fluid Mech. 224, 429–484 (1991). [CrossRef]
  4. M. Raffel, H. Richard, G. E. A. Meier, “On the applicability of background oriented optical tomography for large scale aerodynamic investigations,” Expt. Fluids 28, 477–481 (2000). [CrossRef]
  5. R. E. Pierson, D. F. Olson, E. Y. Chen, L. McMackin, “Comparison of reconstruction-algorithm performance for optical-phase tomography of a heated air flow,” Opt. Eng. 39, 838–846 (2000). [CrossRef]
  6. L. McMackin, B. Masson, N. Clark, K. Bishop, R. Pierson, E. Chen, “Hartmann wavefront sensor studies of dynamic organized structures in flow fields,” AIAA J. 33, 2158–2164 (1995). [CrossRef]
  7. A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).
  8. K. Creath, “Phase measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. (North Holland, Amsterdam, 1988), pp. 349–392. [CrossRef]
  9. G. W. Faris, R. L. Byer, “Three-dimensional beam-deflection optical tomography of a supersonic jet,” Appl. Opt. 27, 5202–5212 (1988). [CrossRef] [PubMed]
  10. G. Keshava Datta, R. M. Vasu, “Non-interferometric methods of phase estimation for application in optical tomography,” J. Mod. Opt. 46, 1377–1388 (1999).
  11. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]
  12. M. H. Maleki, A. J. Devaney, S. Alon, “Tomographic reconstruction from optical scattered intensities,” J. Opt. Soc. Am. 9, 1356–1363 (1992). [CrossRef]
  13. N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984). [CrossRef]
  14. T. E. Gureyev, A. Roberts, K. A. Nugent, “Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials,” J. Opt. Soc. Am. A 12, 1932–1941 (1995). [CrossRef]
  15. A. Barty, K. A. Nugent, A. Roberts, D. Peganin, “Quantitative phase tomography,” Opt. Commun. 175, 329–336 (2000). [CrossRef]
  16. N. Jayshree, G. Keshava Datta, R. M. Vasu, “Optical tomographic microscope for quantitative imaging of phase objects,” Appl. Opt. 39, 277–283 (2000). [CrossRef]
  17. T. E. Gureyev, K. A. Nugent, “Phase retrieval with the transport-of-intensity equation. II. Orthogonal series solution for nonuniform illumination,” J. Opt. Soc. Am. A 13, 1670–1682 (1996). [CrossRef]
  18. L. A. Feldkamp, L. C. Davis, J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. A 1, 612–619 (1984). [CrossRef]
  19. H. S. Ko, K. D. Kihm, “An extended algebraic reconstruction technique (ART) for density-gradient projections: laser speckle photographic tomography,” Expt. Fluids 27, 542–550 (1999). [CrossRef]
  20. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983). [CrossRef]
  21. G. Vdovin, “Reconstruction of an object shape from the near-field intensity of a reflected paraxial beam,” Appl. Opt. 36, 5508–5513 (1997). [CrossRef] [PubMed]
  22. M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1791 (1995). [CrossRef] [PubMed]
  23. A. H. Anderson, “Ray tracing for reconstructive tomography in the presence of object discontinuity boundaries: a comparative analysis of recursive schemes,” J. Opt. Soc. Am. 89, 574–582 (1991).
  24. A. V. Lakshminarayanan, “Reconstruction from divergent ray data,” in Tech. Rep. 92 (Department of Computer Science, State University of New York at Buffalo, 1975).
  25. H. Kudo, T. Saito, “Feasible cone beam scanning methods for exact reconstruction in three-dimensional tomography,” J. Opt. Soc. Am. A 7, 2169–2183 (1990). [CrossRef] [PubMed]
  26. B. D. Smith, “Image reconstruction from cone beam projections: necessary and sufficient conditions and reconstruction methods,” IEEE Trans. Med. Imaging MI-4, 14–25 (1985). [CrossRef]
  27. H. K. Tuy, “An inversion formula for cone-beam reconstruction,” SIAM J. Appl. Math. 43, 546–552 (1983). [CrossRef]
  28. M. Defrise, R. Clack, “A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection,” IEEE Trans. Med. Imaging 13, 186–195 (1994). [CrossRef] [PubMed]
  29. F. Noo, M. Defrise, R. Clack, “Direct reconstruction of cone-beam data acquired with a vertex path containing a circle,” IEEE Trans. Image Process 7, 854–867 (1998). [CrossRef]
  30. L. A. Shepp, B. F. Logan, “The Fourier reconstruction of a head section,” IEEE Trans. Nucl. Sci. NS-21, 21–43 (1974). [CrossRef]
  31. R. H. Sabersky, A. J. Acosta, E. G. Hauptmann, E. M. Gates, Fluid Flow: A First Course in Fluid Dynamics (Prentice-Hall, Englewood Cliffs, N.J., 1999).
  32. A. H. Anderson, “A ray-tracing approach to restoration and resolution enhancement in experimental ultrasound tomography,” Ultrason. Imaging 12, 268–291 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited