OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 21 — Jul. 20, 2004
  • pp: 4150–4156

Design and processing of high-density single-mode fiber arrays for imaging and parallel interferometer applications

Miodrag Scepanovic, Jose E. Castillo, Jennifer K. Barton, David Mathine, Raymond K. Kostuk, and Atsushi Sato  »View Author Affiliations


Applied Optics, Vol. 43, Issue 21, pp. 4150-4156 (2004)
http://dx.doi.org/10.1364/AO.43.004150


View Full Text Article

Enhanced HTML    Acrobat PDF (1590 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design and fabrication procedures for implementing a high-density (16-μm center spacing) single-mode fiber (SMF) array are described. The specific application for this array is a parallel optical coherence tomography system for endoscopic imaging. We obtained fiber elements by etching standard single-mode SMF-28 fibers to a diameter of 14–15 μm. We equalized 1-m lengths of fiber to within 1 mm by using a fiber interferometer setup, and we describe a method for packaging arrays with as many as 100 fibers.

© 2004 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.4500) Medical optics and biotechnology : Optical coherence tomography

History
Original Manuscript: January 21, 2004
Revised Manuscript: April 22, 2004
Published: July 20, 2004

Citation
Miodrag Scepanovic, Jose E. Castillo, Jennifer K. Barton, David Mathine, Raymond K. Kostuk, and Atsushi Sato, "Design and processing of high-density single-mode fiber arrays for imaging and parallel interferometer applications," Appl. Opt. 43, 4150-4156 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-21-4150


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999). [CrossRef]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  3. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express12, 367–376 (2004), http://www.opticsexpress.org . [CrossRef]
  4. C. E. Saxer, J. F. de Boer, B. Hyle Park, Y. Zhao, Y. Chen, J. S. Nelson, “High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355–1357 (2000). [CrossRef]
  5. J. K. Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, A. J. Welch, “Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images,” Dermatology 198, 355–361 (1999). [CrossRef]
  6. J. G. Fujimoto, S. A. Boppart, J. G. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999). [PubMed]
  7. A. M. Rollins, R. Ung-arunyawee, A. Chak, R. Wong, K. Kobayashi, M. V. Sivak, J. A. Izatt, “Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,” Opt. Lett. 24, 1358–1360 (1999). [CrossRef]
  8. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express3, 219–229 (1998), http://www.opticsexpress.org . [CrossRef]
  9. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express11, 3598–3604 (2003), http://www.opticsexpress.org . [CrossRef]
  10. J. O. Barentsz, J. A. Witjes, J. H. Ruijs, “What is new in bladder cancer imaging?” Uroradiology 24, 583–602 (1997).
  11. R. K. Kostuk, J. Carriere, “Interconnect characteristics of fiber image guides,” Appl. Opt. 40, 2428–2434 (2001). [CrossRef]
  12. E. J. Murphy, Integrated Optical Circuits and Components—Design and Applications (Marcel Dekker, New York, 1999).
  13. A. Sato, M. Scepanovic, R. K. Kostuk, “Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm,” Appl. Opt. 42, 778–784 (2003). [CrossRef] [PubMed]
  14. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997). [CrossRef]
  15. A. Dandridge, “Zero path-length difference in fiber-optic interferometers,” J. Lightwave Technol. LT-1, 514–516 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited