OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 22 — Aug. 1, 2004
  • pp: 4311–4321

High-resolution optical angle sensors: approaching the diffraction limit to the sensitivity

Augusto García-Valenzuela, Gabriel E. Sandoval-Romero, and Celia Sánchez-Pérez  »View Author Affiliations

Applied Optics, Vol. 43, Issue 22, pp. 4311-4321 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (194 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We carry out a detailed analysis of angle-sensitive devices based on the critical-angle effect. We consider their use in measuring small angular deflections of a laser beam. We establish the diffraction limit to the sensitivity for optical-angle sensors based on reflection and transmission of a laser beam. We find that this limit is identical to that of the triangulation scheme when using a position-sensitive detector or the autocollimation scheme. We analyze the main proposals to date of optical-angle sensors based on the critical-angle effect, focusing on their maximum sensitivity and their polarization dependence in practical conditions. We propose and analyze theoretically a novel and simple angle-sensitive device for sensing optical-beam deflections with very low polarization dependence and a maximum sensitivity close to the diffraction limit when used with typical laser beams. We discuss the basic principles for designing this type of device, provide numerical results, and point out a convenient fabrication procedure.

© 2004 Optical Society of America

OCIS Codes
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(230.0250) Optical devices : Optoelectronics
(230.2090) Optical devices : Electro-optical devices
(230.5480) Optical devices : Prisms
(300.6430) Spectroscopy : Spectroscopy, photothermal

Original Manuscript: January 28, 2004
Revised Manuscript: January 28, 2004
Published: August 1, 2004

Augusto García-Valenzuela, Gabriel E. Sandoval-Romero, and Celia Sánchez-Pérez, "High-resolution optical angle sensors: approaching the diffraction limit to the sensitivity," Appl. Opt. 43, 4311-4321 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, J. Gurley, “An atomic-resolution atomic-force microscope implemented using an optical lever,” J. Appl. Phys. 65, 164–167 (1989). [CrossRef]
  2. C. A. J. Putman, B. G. De Grooth, N. F. van de Hulst, J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy,” J. Appl. Phys. 72, 6–12 (1992). [CrossRef]
  3. G. Meyer, N. M. Amer, “Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope,” Appl. Phys. Lett. 57, 2089–2091 (1990). [CrossRef]
  4. B. H. Kim, F. E. Prins, D. P. Kern, S. Raible, U. Weimar, “Multicomponent analysis and prediction with a cantilever array based gas sensor,” Sens. Actuators B 77, 1–7 (2001).
  5. F. M. Battiston, J.-P. Ramseyer, H. P. Lang, M. K. Baller, C. Gerber, J. K. Gimzewski, E. Meyer, H.-J. Güntherodt, “A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout,” Sens. Actuators B 77, 122–131 (2001). [CrossRef]
  6. J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, C. Gerber, “A femtojoule calorimeter using michromechanical sensors,” Rev. Sci. Instrum. 65, 3793–3798 (1994). [CrossRef]
  7. R. Raiteri, M. Grattarola, H.-J. Butt, P. Sklàdal, “Micromechanical cantilever-based biosensors,” Sens. Actuators B 79, 115–126 (2001). [CrossRef]
  8. A. C. Boccara, D. Fournier, J. Badoz, “Thermo-optical spectroscopy: detection by the “mirage effect,” Appl. Phys. Lett. 36, 130–132 (1980). [CrossRef]
  9. J. C. Murphy, L. C. Aamodt, “Photothermal spectroscopy using optical beam probing: mirage effect,” J. Appl. Phys. 51, 4580–4588 (1980). [CrossRef]
  10. B. Zimering, A. C. Boccara, “Compact design for real time in situ atmospheric trace gas detection based on mirage effect (photothermal deflection) spectroscopy,” Rev. Sci. Instrum. 67, 1891–1895 (1996). [CrossRef]
  11. A. L. Glazov, K. L. Muratikov, “Measurement of thermal parameters of solids by a modified photodeflection method,” Opt. Eng. 36, 358–362 (1997). [CrossRef]
  12. A. Salazar, A. Sánchez-Lavega, J. Fernández, “Theory of thermal diffusivity determination by the “mirage” technique in solids,” J. Appl. Phys. 65, 4150–4156 (1989). [CrossRef]
  13. D. P. Almond, P. M. Patel, Photothermal Science and Techniques (Chapman Hall, London, 1996).
  14. J. Opsal, A. Rosencwaig, D. L. Willenborg, “Thermal-wave detection and thin-film thickness measurements with laser beam deflection,” Appl. Opt. 22, 3169–3176 (1983). [CrossRef] [PubMed]
  15. T. Kohno, N. Ozawa, K. Miyamoto, T. Musha, “High precision optical surface sensor,” Appl. Opt. 27, 103–108 (1988). [CrossRef] [PubMed]
  16. A. E. Ennos, M. S. Virdee, “High accuracy profile measurement of quasi-conical mirror surfaces by laser autocollimation,” Precis. Eng. 4, 5–8 (1982). [CrossRef]
  17. S. R. Cook, M. A. Hoffbauer, J. B. Cross, “A specialized torsion balance designed to measure the absolute flux density of hyperthermal molecular beams containing reactive species,” Rev. Sci. Instrum. 67, 1781–1789 (1996). [CrossRef]
  18. J. N. Caron, Y. Yang, J. B. Mehl, “Gas-coupled laser acoustic detection at ultrasonic and audio frequencies,” Rev. Sci. Instrum. 69, 2912–2917 (1998). [CrossRef]
  19. B. A. Williams, R. J. Dewhurst, “A fiber-optic detection system for laser-ultrasound Lamb-wave examination of defects in thin materials,” Nondestr. Test. Eval. 12, 343–353 (1996). [CrossRef]
  20. M. Rosete-Aguilar, R. Díaz-Uribe, “Profile testing of spherical surfaces by laser deflectometry,” Appl. Opt. 32, 4690–4697 (1993). [CrossRef] [PubMed]
  21. W. Gao, S. Kiyono, T. Nomura, “A new multiprobe method of roundness measurements,” Precis. Eng. 19, 37–45 (1996). [CrossRef]
  22. P. S. Huang, S. Kiyono, O. Kamada, “Angle measurement based on the internal-reflection effect: a new method,” Appl. Opt. 31, 6047–6055 (1992). [CrossRef] [PubMed]
  23. P. S. Huang, J. Ni, “Angle measurement based on the internal-reflection effect using elongated critical-angle prisms,” Appl. Opt. 35, 2239–2241 (1996). [CrossRef] [PubMed]
  24. A. García-Valenzuela, R. Diaz-Uribe, “Detection limits of an internal-reflection sensor for the optical beam deflection method,” Appl. Opt. 36, 4456–4462 (1997). [CrossRef] [PubMed]
  25. P. S. Huang, Y. Li, “Small-angle measurement by use of a single prism,” Appl. Opt. 37, 6636–6642 (1998). [CrossRef]
  26. J. Villatoro, A. García-Valenzuela, “Measuring optical power transmission near the critical angle for sensing beam deflection,” Appl. Opt. 37, 6648–6653 (1998). [CrossRef]
  27. S. Zhang, S. Kiyono, Y. Uda, “Nanoradian angle sensor and in situ self-calibration,” Appl. Opt. 37, 4154–4159 (1998). [CrossRef]
  28. P. S. Huang, “Use of thin films for high-sensitivity angle measurement,” Appl. Opt. 38, 4831–4836 (1999). [CrossRef]
  29. A. Zhang, P. S. Huang, “Total internal reflection for precision small-angle measurement,” Appl. Opt. 40, 1617–1622 (2001). [CrossRef]
  30. A. García-Valenzuela, M. Peña-Gomar, J. Villatoro, “Sensitivity analysis of angle sensitive detectors based on a film resonator,” Opt. Eng. 42, 1084–1092 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited