OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 22 — Aug. 1, 2004
  • pp: 4311–4321

High-Resolution Optical Angle Sensors: Approaching the Diffraction Limit to the Sensitivity

Augusto García-Valenzuela, Gabriel E. Sandoval-Romero, and Celia Sánchez-Pérez  »View Author Affiliations

Applied Optics, Vol. 43, Issue 22, pp. 4311-4321 (2004)

View Full Text Article

Acrobat PDF (194 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We carry out a detailed analysis of angle-sensitive devices based on the critical-angle effect. We consider their use in measuring small angular deflections of a laser beam. We establish the diffraction limit to the sensitivity for optical-angle sensors based on reflection and transmission of a laser beam. We find that this limit is identical to that of the triangulation scheme when using a position-sensitive detector or the autocollimation scheme. We analyze the main proposals to date of optical-angle sensors based on the critical-angle effect, focusing on their maximum sensitivity and their polarization dependence in practical conditions. We propose and analyze theoretically a novel and simple angle-sensitive device for sensing optical-beam deflections with very low polarization dependence and a maximum sensitivity close to the diffraction limit when used with typical laser beams. We discuss the basic principles for designing this type of device, provide numerical results, and point out a convenient fabrication procedure.

© 2004 Optical Society of America

OCIS Codes
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(230.0250) Optical devices : Optoelectronics
(230.2090) Optical devices : Electro-optical devices
(230.5480) Optical devices : Prisms
(300.6430) Spectroscopy : Spectroscopy, photothermal

Augusto García-Valenzuela, Gabriel E. Sandoval-Romero, and Celia Sánchez-Pérez, "High-Resolution Optical Angle Sensors: Approaching the Diffraction Limit to the Sensitivity," Appl. Opt. 43, 4311-4321 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, and J. Gurley, “An atomic-resolution atomic-force microscope implemented using an optical lever,” J. Appl. Phys. 65, 164–167 (1989).
  2. C. A. J. Putman, B. G. De Grooth, N. F. van de Hulst, and J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy,” J. Appl. Phys. 72, 6–12 (1992).
  3. G. Meyer and N. M. Amer, “Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope,” Appl. Phys. Lett. 57, 2089–2091 (1990).
  4. B. H. Kim, F. E. Prins, D. P. Kern, S. Raible, and U. Weimar, “Multicomponent analysis and prediction with a cantilever array based gas sensor,” Sens. Actuators B 77, 1–7 (2001).
  5. F. M. Battiston, J.-P. Ramseyer, H. P. Lang, M. K. Baller, C. Gerber, J. K. Gimzewski, E. Meyer, and H.-J. Güntherodt, “A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout,” Sens. Actuators B 77, 122–131 (2001).
  6. J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A femtojoule calorimeter using michromechanical sensors,” Rev. Sci. Instrum. 65, 3793–3798 (1994).
  7. R. Raiteri, M. Grattarola, H.-J. Butt, and P. Sklàdal, “Micromechanical cantilever-based biosensors,” Sens. Actuators B 79, 115–126 (2001).
  8. A. C. Boccara, D. Fournier, and J. Badoz, “Thermo-optical spectroscopy: detection by the “mirage effect,” Appl. Phys. Lett. 36, 130–132 (1980).
  9. J. C. Murphy and L. C. Aamodt, “Photothermal spectroscopy using optical beam probing: mirage effect,” J. Appl. Phys. 51, 4580–4588 (1980).
  10. B. Zimering and A. C. Boccara, “Compact design for real time in situ atmospheric trace gas detection based on mirage effect (photothermal deflection) spectroscopy,” Rev. Sci. Instrum. 67, 1891–1895 (1996).
  11. A. L. Glazov and K. L. Muratikov, “Measurement of thermal parameters of solids by a modified photodeflection method,” Opt. Eng. 36, 358–362 (1997).
  12. A. Salazar, A. Sánchez-Lavega, and J. Fernández, “Theory of thermal diffusivity determination by the “mirage” technique in solids,” J. Appl. Phys. 65, 4150–4156 (1989).
  13. D. P. Almond and P. M. Patel, Photothermal Science and Techniques (Chapman & Hall, London, 1996).
  14. J. Opsal, A. Rosencwaig, and D. L. Willenborg, “Thermal-wave detection and thin-film thickness measurements with laser beam deflection,” Appl. Opt. 22, 3169–3176 (1983).
  15. T. Kohno, N. Ozawa, K. Miyamoto, and T. Musha, “High precision optical surface sensor,” Appl. Opt. 27, 103–108 (1988).
  16. A. E. Ennos and M. S. Virdee, “High accuracy profile measurement of quasi-conical mirror surfaces by laser autocollimation,” Precis. Eng. 4, 5–8 (1982).
  17. S. R. Cook, M. A. Hoffbauer, and J. B. Cross, “A specialized torsion balance designed to measure the absolute flux density of hyperthermal molecular beams containing reactive species,” Rev. Sci. Instrum. 67, 1781–1789 (1996).
  18. J. N. Caron, Y. Yang, and J. B. Mehl, “Gas-coupled laser acoustic detection at ultrasonic and audio frequencies,” Rev. Sci. Instrum. 69, 2912–2917 (1998).
  19. B. A. Williams and R. J. Dewhurst, “A fiber-optic detection system for laser-ultrasound Lamb-wave examination of defects in thin materials,” Nondestr. Test. Eval. 12, 343–353 (1996).
  20. M. Rosete-Aguilar and R. Díaz-Uribe, “Profile testing of spherical surfaces by laser deflectometry,” Appl. Opt. 32, 4690–4697 (1993).
  21. W. Gao, S. Kiyono, and T. Nomura, “A new multiprobe method of roundness measurements,” Precis. Eng. 19, 37–45 (1996).
  22. P. S. Huang, S. Kiyono, and O. Kamada, “Angle measurement based on the internal-reflection effect: a new method,” Appl. Opt. 31, 6047–6055 (1992).
  23. P. S. Huang and J. Ni, “Angle measurement based on the internal-reflection effect using elongated critical-angle prisms,” Appl. Opt. 35, 2239–2241 (1996).
  24. A. García-Valenzuela and R. Diaz-Uribe, “Detection limits of an internal-reflection sensor for the optical beam deflection method,” Appl. Opt. 36, 4456–4462 (1997).
  25. P. S. Huang and Y. Li, “Small-angle measurement by use of a single prism,” Appl. Opt. 37, 6636–6642 (1998).
  26. J. Villatoro and A. García-Valenzuela, “Measuring optical power transmission near the critical angle for sensing beam deflection,” Appl. Opt. 37, 6648–6653 (1998).
  27. S. Zhang, S. Kiyono, and Y. Uda, “Nanoradian angle sensor and in situ self-calibration,” Appl. Opt. 37, 4154–4159 (1998).
  28. P. S. Huang, “Use of thin films for high-sensitivity angle measurement,” Appl. Opt. 38, 4831–4836 (1999).
  29. A. Zhang and P. S. Huang, “Total internal reflection for precision small-angle measurement,” Appl. Opt. 40, 1617–1622 (2001).
  30. A. García-Valenzuela, M. Peña-Gomar, and J. Villatoro, “Sensitivity analysis of angle sensitive detectors based on a film resonator,” Opt. Eng. 42, 1084–1092 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited