OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 22 — Aug. 1, 2004
  • pp: 4415–4426

Retrieval of Profile Information from Airborne Multiaxis UV-Visible Skylight Absorption Measurements

Marco Bruns, Stefan A. Buehler, John P. Burrows, Klaus-Peter Heue, Ulrich Platt, Irene Pundt, Andreas Richter, Alexej Rozanov, Thomas Wagner, and Ping Wang  »View Author Affiliations


Applied Optics, Vol. 43, Issue 22, pp. 4415-4426 (2004)
http://dx.doi.org/10.1364/AO.43.004415


View Full Text Article

Acrobat PDF (564 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A recent development in ground-based remote sensing of atmospheric constituents by UV-visible absorption measurements of scattered light is the simultaneous use of several horizon viewing directions in addition to the traditional zenith-sky pointing. The different light paths through the atmosphere enable the vertical distribution of some atmospheric absorbers, such as NO2, BrO, or O3, to be retrieved. This approach has recently been implemented on an airborne platform. This novel instrument, the airborne multiaxis differential optical absorption spectrometer (AMAXDOAS), has been flown for the first time. In this study, the amount of profile information that can be retrieved from such measurements is investigated for the trace gas NO2. Sensitivity studies on synthetic data are performed for a variety of representative measurement conditions including two wavelengths, one in the UV and one in the visible, two different surface spectral reflectances, various lines of sight (LOSs), and for two different flight altitudes. The results demonstrate that the AMAXDOAS measurements contain useful profile information, mainly at flight altitude and below the aircraft. Depending on wavelength and LOS used, the vertical resolution of the retrieved profiles is as good as 2 km near flight altitude. Above 14 km the profile information content of AMAXDOAS measurements is sparse. Airborne multiaxis measurements are thus a promising tool for atmospheric studies in the troposphere and the upper troposphere and lower stratosphere region.

© 2004 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.7030) Atmospheric and oceanic optics : Troposphere
(280.1120) Remote sensing and sensors : Air pollution monitoring
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

Citation
Marco Bruns, Stefan A. Buehler, John P. Burrows, Klaus-Peter Heue, Ulrich Platt, Irene Pundt, Andreas Richter, Alexej Rozanov, Thomas Wagner, and Ping Wang, "Retrieval of Profile Information from Airborne Multiaxis UV-Visible Skylight Absorption Measurements," Appl. Opt. 43, 4415-4426 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-22-4415


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. W. Brewer, C. T. McElroy, and J. B. Kerr, “Nitrogen dioxide concentrations in the atmosphere,” Nature 246, 129–133 (1973).
  2. J. F. Noxon, “Nitrogen dioxide in the stratosphere and troposphere measured by ground-based absorption spectroscopy,” Science 189, 547–549 (1975).
  3. R. L. McKenzi and P. V. Johnston, “Seasonal variations in stratospheric NO2 at 45 °S,” Geophys. Res. Lett. 9, 1255–1258 (1982).
  4. J. P. Pommereau and F. Goutail, “O3 and NO2 ground-based measurements by visible spectrometry during Arctic winter and spring 1988,” Geophys. Res. Lett. 15, 891–894 (1988).
  5. S. Solomon, A. L. Schmeltekopf, and R. W. Sanders, “On the interpretation of zenith sky absorption measurements,” J. Geophys. Res. 92, 8311–8319 (1987).
  6. U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Analysis Series (Wiley, New York, 1994), pp. 27–84.
  7. J. F. Noxon, E. C. Whipple, Jr., and R. S. Hyde, “Stratospheric NO2: 1. Observational method and behavior at mid-latitudes,” J. Geophys. Res. 84, 5047–5065 (1979).
  8. R. L. McKenzi, P. V. Johnston, C. T. McElroy, J. B. Kerr, and S. Solomon, “Altitude distributions of stratospheric constituents from ground-based measurements at twilight,” J. Geophys. Res. 96, 15499–15511 (1991).
  9. K. E. Preston, “The retrieval of NO2 vertical profiles from ground-based twilight UV-visible measurements,” Ph.D. dissertation (Pembroke College, Cambridge, England, 1995).
  10. K. E. Preston, R. L. Jones, and H. K. Roscoe, “Retrieval of NO2 vertical profiles from ground-based UV-visible measurements: method and validation,” J. Geophys. Res. 102, 19089–19098 (1997).
  11. L. A. Barrie, J. W. Bottenheimer, R. C. Schnell, P. J. Crutzen, and R. A. Rasmussen, “Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere,” Nature 334, 138–141 (1988).
  12. A. Richter, F. Wittrock, M. Eisinger, and J. P. Burrows, “GOME observations of tropospheric BrO in northern hemispheric spring and summer 1997,” Geophys. Res. Lett. 25, 2683–2686 (1998).
  13. U. Platt and T. Wagner, “Satellite mapping of enhanced BrO concentrations in the troposphere,” Nature 395, 486–490 (1998).
  14. A. Wahner, R. O. Jakoubek, G. H. Mount, A. R. Ravishankara, and A. L. Schmeltekopf, “Remote sensing observations of nighttime OClO column during the airborne Antarctic ozone experiment, September 8, 1987,” J. Geophys. Res. 94, 11405–11411 (1989).
  15. A. Wahner, R. O. Jakoubek, G. H. Mount, A. R. Ravishankara, and A. L. Schmeltekopf, “Remote sensing observations of daytime column NO2 during the airborne Antarctic ozone experiment, August 22 to October 2, 1987,” J. Geophys. Res. 94, 16619–16632 (1989).
  16. A. Wahner, J. Callies, H.-P. Dorn, U. Platt, and C. Schiller, “Near UV atmospheric absorption measurements of column abundances during airborne Arctic stratospheric expedition, January-February 1989: technique and NO2 observations,” Geophys. Res. Lett. 17, 497–500 (1990).
  17. A. Wahner, J. Callies, H.-P. Dorn, U. Platt, and C. Schiller, “Near UV atmospheric absorption measurements of column abundances during airborne Arctic stratospheric expedition, January-February 1989: 3. BrO observations,” Geophys. Res. Lett. 17, 517–520 (1990).
  18. C. Schiller, A. Wahner, H.-P. Dorn, U. Platt, J. Callies, and D. H. Ehhalt, “Near UV atmospheric absorption measurements of column abundances during airborne Arctic stratospheric expedition, January-February 1989: 2. OClO observations,” Geophys. Res. Lett. 17, 501–504 (1990).
  19. R. Brandtjen, T. Klüpfel, D. Perner, and B. M. Knudsen, “Airborne measurements during the European Arctic Stratospheric Ozone Experiment: observation of OClO,” Geophys. Res. Lett. 21, 1363–1366 (1994).
  20. K. Pfeilsticker and U. Platt, “Airborne measurements during the European Arctic stratospheric experiment: observation of O3 and NO2,” Geophys. Res. Lett. 21, 1375–1378 (1994).
  21. F. Erle, A. Grendel, D. Perner, U. Platt, and K. Pfeilsticker, “Evidence of heterogeneous bromine chemistry on cold stratospheric sulphate aerosols,” Geophys. Res. Lett. 25, 4329–4332 (1998).
  22. A. Petritoli, F. Ravegnani, G. Giovanelli, D. Bortoli, U. Bonaf, I. Kostadinov, and A. Oulanovsky, “Off-axis measurements of atmospheric trace gases by use of an airborne ultraviolet-visible spectrometer,” Appl. Opt. 41, 5593–5599 (2002).
  23. M. L. Melamed, S. Solomon, J. S. Daniel, A. O. Langford, R. W. Portmann, T. B. Ryerson, D. K. Nicks, Jr., and S. A. McKeen, “Measuring reactive nitrogen emissions from point sources using visible spectroscopy from aircraft,” J. Environ. Monit. 5, 29–34 (2003).
  24. H. Bovensmann, J. P. Burrows, M. Buchwitz, J. Frerick, S. Noël, V. V. Rozanov, K. V. Chance, and A. H. P. Goede, “SCIAMACHY: Mission objectives and measurement modes,” J. Atmos. Sci. 56, 127–150 (1999).
  25. T. Wagner, M. Bruns, J. P. Burrows, S. Fietkau, F. Finocchi, K.-P. Heue, G. Hönninger, U. Platt, I. Pundt, A. Richter, R. Rollenbeck, C. von Friedeburg, F. Wittrock, and P. Xie, “The AMAXDOAS instrument and its application for SCIAMACHY validation,” in ESA Symposium on European Rocket and Balloon Programmes and Related Research, ESA SP-471, B. Warmbein, ed. (European Space Agency, Paris, 2001).
  26. G. Hönninger and U. Platt, “The role of BrO and its vertical distribution during surface ozone depletion at alert,” Atmos. Environ. 36, 2481–2489 (2002).
  27. F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, and J. P. Burrows, “MAX-DOAS measurements of atmospheric trace gases in Ny-Ålesund,” Atmos. Chem. Phys. Discuss. 3, 6109–6145 (2003).
  28. A. Rozanov, V. Rozanov, and J. P. Burrows, “A numerical radiative transfer model for a spherical planetary atmosphere: combined differential-integral approach involving the Picard iterative approximation,” J. Quant. Spectrosc. Radiat. Transfer 69, 491–512 (2001).
  29. L. C. Marquard, T. Wagner, and U. Platt, “Improved air mass factor concepts for scattered radiation differential optical absorption spectroscopy of atmospheric species,” J. Geophys. Res. 105, 1315–1327 (2000).
  30. C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. 14, 609–624 (1976).
  31. C. D. Rodgers, “Characterization and error analysis of profiles retrieved from remote sounding measurements,” J. Geophys. Res. 95, D5, 5587–5595 (1990).
  32. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice, Vol. 2 of Series on Atmospheric, Oceanic and Planetary Physics (World Scientific, London, 2000).
  33. E. P. Shettle and R. W. Fenn, “Models of the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Tech. Rep. AFGL-TR-79–0214, Project 7670 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  34. F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, and S. A. Clough, “Users Guide to lowtran 7,” Tech. Rep. AFGL-TR-88–0177 (NTIS AD A206773) (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).
  35. M. Chipperfield, “Multiannual simulations with a three-dimensional chemical transport model,” J. Geophys. Res. 104, 1781–1805 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited