OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 22 — Aug. 1, 2004
  • pp: 4446–4453

Experimental Method Based on Wavelength-Modulation Spectroscopy for the Characterization of Semiconductor Lasers under Direct Modulation

Stéphane Schilt and Luc Thévenaz  »View Author Affiliations


Applied Optics, Vol. 43, Issue 22, pp. 4446-4453 (2004)
http://dx.doi.org/10.1364/AO.43.004446


View Full Text Article

Acrobat PDF (280 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An experimental method is presented for characterization of the combined intensity and frequency modulation produced when the injection current of a laser diode is modulated. The reported technique is based on the analysis of the harmonic signals produced when a modulated laser is used to probe a gas absorption line by the so-called wavelength-modulation spectroscopy method. Based on a theoretical model of this technique, we present two methods that facilitate the determination of (i) the deviation in laser frequency and (ii) the phase shift between intensity and frequency modulation. These methods are illustrated experimentally by measurement of the modulation parameters of a 2-μm distributed-feedback laser by use of a CO2 absorption line. The experimental results have been compared with those obtained with another traditional method and have shown full agreement in the frequency range (400 Hz-30 kHz) considered.

© 2004 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(140.5960) Lasers and laser optics : Semiconductor lasers
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6380) Spectroscopy : Spectroscopy, modulation

Citation
Stéphane Schilt and Luc Thévenaz, "Experimental Method Based on Wavelength-Modulation Spectroscopy for the Characterization of Semiconductor Lasers under Direct Modulation," Appl. Opt. 43, 4446-4453 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-22-4446


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
  2. J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994).
  3. D. T. Cassidy and L. J. Bonnell, “Trace gas detection with short-external-cavity InGaAsP diode laser transmitter modules operating at 1.58 μm,” Appl. Opt. 27, 2688–2693 (1988).
  4. A. Lucchesini, I. Longo, C. Gabbanini, S. Gozzini, and L. Moi, “Diode laser spectroscopy of methane overtone transitions,” Appl. Opt. 32, 5211–5216 (1993).
  5. X. Zhu and D. T. Cassidy, “Modulation spectroscopy with a semiconductor diode laser by injection-current modulation,” J. Opt. Soc. Am. B 14, 1945–1950 (1997).
  6. D. T. Cassidy and J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982).
  7. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
  8. J. Reid, B. K. Garside, M. El-Sherbiny, and E. A. Ballik, “High sensitivity point monitoring of atmospheric gases employing tunable diode lasers,” Appl. Opt. 17, 1806–1810 (1978).
  9. M. Loewenstein, “Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules,” J. Quant. Spectrosc. Radiat. Transfer 40, 249–256 (1988).
  10. F. S. Pavone and M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
  11. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
  12. R. M. Williams, J. F. Kelly, S. W. Sharpe, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Spectral and modulation performance of quantum cascade lasers with application to remote sensing,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE 3758, 11–22 (1999).
  13. C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
  14. M. Gabrysch, C. Corsi, F. S. Pavone, and M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor diode laser at 1.578 μm,” Appl. Phys. B 65, 75–79 (1997).
  15. A. Lucchesini, M. De Rosa, D. Pellicia, A. Ciucci, C. Gabbanini, and S. Gozzini, “Diode laser spectroscopy of overtone bands of acetylene,” Appl. Phys. B 63, 277–282 (1996).
  16. U. Gustafsson, G. Somesfalean, J. Alnis, and S. Svanberg, “Frequency-modulation spectroscopy with blue diode lasers,” Appl. Opt. 39, 3774–3780 (2000).
  17. G. Jacobsen, H. Olesen, and F. Birkedahl, “Current/frequency-modulation characteristics for directly optical frequency-modulated injection lasers at 830 nm and 1.3 μm,” Electron. Lett. 18, 874–876 (1982).
  18. H. Olesen and G. Jacobsen, “A theoretical and experimental analysis of modulated laser fields and power spectra,” IEEE J. Quantum Electron. 18, 2069–2080 (1982).
  19. M. Imai and K. Kawakita, “Measurement of direct frequency modulation characteristics of laser diodes by Michelson interferometry,” Appl. Opt. 29, 348–353 (1990).
  20. H. Tsuchida, T. Tako, and M. Ohtsu, “A novel technique for measuring the frequency deviation of semiconductor lasers under direct modulation,” Jpn. J. Appl. Phys. 22, L19–L21 (1983).
  21. H. Olesen and G. Jacobsen, “Phase delay between intensity and frequency modulation of a semiconductor laser (including a new measurement method),” in Proceedings of the 8th European Conference on Optical Communication (n.p., 1982), pp. 291–295.
  22. S. Schilt, L. Thévenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42, 6728–6738 (2003).
  23. S. Schilt, “Mesure de traces de gaz à l’aide de lasers à semi-conducteur,” Ph.D. dissertation (Swiss Federal Institute of Technology, Lausanne, 2002).
  24. P. Kluczynski, J. Gustafsson, A. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta B 56, 1277–1354 (2001).
  25. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
  26. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
  27. F. Wittgrefe, M. D. Hoogerland, and J. P. Woerdman, “Semiconductor lasers for spectroscopy,” Meas. Sci. Technol. 2, 304–311 (1991).
  28. S. Saito, O. Nilsson, and Y. Yamamoto, “Coherent FSK transmitter using a negative feedback stabilized semiconductor laser,” Electron. Lett. 20, 703–704 (1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited