## Equiphase-Sphere Approximation for Analysis of Light Scattering by Arbitrarily Shaped Nonspherical Particles

Applied Optics, Vol. 43, Issue 23, pp. 4497-4505 (2004)

http://dx.doi.org/10.1364/AO.43.004497

Acrobat PDF (228 KB)

### Abstract

We extend the previously proposed concept of equiphase sphere (EPS) to analyze light-scattering properties of arbitrarily shaped particles. Our analyses based on the Wentzel-Kramers-Brillouin technique and numerical studies based on the finite-difference time-domain method demonstrate that a wide range of irregularly shaped particles can be approximated as their equivalent equiphase ellipsoids to determine their total scattering cross-section (TSCS) spectra. As a result, a simple expression given by the EPS approximation can be used to calculate the TSCS spectra of these particles. We find that the accuracy of the EPS approximation is influenced by both the magnitude and the geometric scale of the surface perturbation of the particle, and we derive validity conditions of the EPS approximation to guide the practical application of this method.

© 2004 Optical Society of America

**OCIS Codes**

(290.0290) Scattering : Scattering

(290.5850) Scattering : Scattering, particles

**Citation**

Xu Li, Zhigang Chen, Allen Taflove, and Vadim Backman, "Equiphase-Sphere Approximation for Analysis of Light Scattering by Arbitrarily Shaped Nonspherical Particles," Appl. Opt. **43**, 4497-4505 (2004)

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-23-4497

Sort: Year | Journal | Reset

### References

- L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. V. Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
- J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378–387 (2002).
- A. Wax, C. Yang, M. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
- Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromine, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
- H. K. Roy, Y. Liu, R. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126, 1071–1081 (2004).
- J. W. Pyhtila, R. N. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Exp. 11, 3473–3484 (2003), http://www.opticsexpress.org.
- M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements and Applications (Academic, San Diego, Calif., 2000).
- P. Chylek and J. Zhan, “Interference structure of the Mie extinction cross section,” J. Opt. Soc. Am. A 6, 1846–1851 (1989).
- H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
- Z. Chen, A. Taflove, and V. Backman, “Concept of the equiphase sphere for light scattering by nonspherical dielectric particles,” J. Opt. Soc. Am. A 21, 88–97 (2004).
- X. Li, Z. Chen, J. Gong, A. Taflove, and V. Backman, “Novel analytical techniques to address forward and inverse problems of light scattering by irregularly shaped particles,” Opt. Lett. 29, 1239–1401 (2004).
- A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 2000).
- H. Nussenzveig and W. Wiscombe, “Efficiency factors in Mie scattering,” Phys. Rev. Lett. 45, 1490–1494 (1980).
- Z. Chen, A. Taflove, and V. Backman, “Equivalent volume-averaged light scattering behavior of randomly inhomogeneous dielectric spheres in the resonant range,” Opt. Lett. 28, 765–767 (2003).
- C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory (Springer-Verlag, New York, 1999).
- J. D. Klett and R. A. Sutherland, “Approximate methods for modeling the scattering properties of non-spherical particles: evaluation of the Wentzel-Kramers-Brillouin method,” Appl. Opt. 31, 373–386 (1992).
- K. Muinonen, “Light scattering by stochastically shaped particles,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, San Diego, Calif., 2000).
- J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
- K. R. Umashankar and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat. 24, 397–405 (1982).
- A. Taflove and K. R. Umashankar, “Radar cross-section of general three-dimensional structures,” IEEE Trans. Electromagn. Compat. 25, 433–440 (1983).
- K. Muinonen, T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577–601 (1996).
- K. Muinonen and T. Nousiainen, G-sphere, 2002. Available under the GNU General Public License, http://www.meteo.helsinki.fi/~tpnousia/gsphere/index.html.

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.