OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 23 — Aug. 10, 2004
  • pp: 4527–4538

Implementation of fast-Fourier-transform-based simulations of extra-large atmospheric phase and scintillation screens

Giorgio Sedmak  »View Author Affiliations

Applied Optics, Vol. 43, Issue 23, pp. 4527-4538 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (578 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fast-Fourier-transform-based simulations of single-layer atmospheric von Kármán phase screens and Kolmogorov scintillation screens up to hundreds of meters in size were implemented and tested for applications with percent range accuracy. The tests included the expected and the observed structure and pupil variance functions; for the phase, the tests also included the Fried turbulence parameter r 0 measured by the seeing and by a simulated differential image motion monitor. The standard compensations used to correct the undersampling at low spatial frequencies were improved, and those needed for the high spatial frequencies were determined analytically. The limiting ratios of the screen sampling step to r0 and of the screen size to the pupil aperture were estimated by means of the simulated data. Sample results are shown that demonstrate the performances of the simulations for single-layer Kolmogorov and von Kármán phase screens up to 200 m in size and for Kolmogorov scintillation screens for pupils up to 50 m of aperture.

© 2004 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(070.2590) Fourier optics and signal processing : ABCD transforms
(100.2000) Image processing : Digital image processing
(290.5930) Scattering : Scintillation
(350.5030) Other areas of optics : Phase

Original Manuscript: October 23, 2003
Revised Manuscript: April 13, 2004
Published: August 10, 2004

Giorgio Sedmak, "Implementation of fast-Fourier-transform-based simulations of extra-large atmospheric phase and scintillation screens," Appl. Opt. 43, 4527-4538 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990). [CrossRef]
  2. B. M. Welsh, “A Fourier-series-based atmospheric phase screen generator for simulating nonisoplanatic geometries and temporal evolution,” in Propagation and Imaging through the Atmosphere, L. R. Bissonnette, J. C. Dainty, eds., Proc. SPIE3125, 327–338 (1997). [CrossRef]
  3. E. M. Johansson, D. T. Gavel, “Simulation of stellar speckle imaging,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 372–383 (1994). [CrossRef]
  4. V. V. Voitsekhovich, L. J. Sánchez, V. G. Orlov, “Effect of scintillation on adaptive optics systems,” Rev. Mex. Astron. Astrophys. 38, 193–198 (2002).
  5. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1380 (1966). [CrossRef]
  6. B. L. McGlamery, “Computer simulation studies of compensation of turbulence degraded images,” in Image Processing, J. C. Urbach, ed., Proc. SPIE74, 225–233 (1976). [CrossRef]
  7. D. Kouznetsov, V. V. Voitsckhovich, R. Ortega-Martinez, “Simulation of turbulence-induced phase and log-amplitude distortions,” Appl. Opt. 36, 464–469 (1997). [CrossRef] [PubMed]
  8. J. E. Nelson, “Design concepts for the California Extremely Large Telescope (CELT),” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, T. Sebring, T. Andersen, eds., Proc. SPIE4004, 405–419 (2000). [CrossRef]
  9. P. Dierickx, R. Gilmozzi, “OWL concept overview,” in Proceedings of Bäckaskog Workshop on Extremely Large Telescopes. T. Andersen, A. Ardeberg, R. Gilmozzi, eds. (European Southern Observatory, Garching, Germany, 2000), Vol. 57, pp. 43–49.
  10. R. Neuhäuser, W. Brandner, A. Eckart, E. W. Guenther, J. Alves, Th. Ott, N. Huélamo, M. Fernández, “On the possibility of ground-based direct imaging detection of extra-solar planets: the case of TWA-7,” Astron. Astrophys. 354, L9–L12 (2000).
  11. A. Glindemann, “Photon counting vs. CCD sensors for wavefront sensing—performance comparison in the presence of noise,” in Advanced Technology Optical Telescopes V, L. M. Stepp, ed., Proc. SPIE2199, 824–834 (1994). [CrossRef]
  12. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1981), Vol. 19, pp. 281–376. [CrossRef]
  13. G. Sedmak, “Performance analysis of and compensation for aspect ratio effects of fast-Fourier-transform-based simulations of large atmospheric wave fronts,” Appl. Opt. 37, 4605–4613 (1998). [CrossRef]
  14. B. J. Herman, L. A. Strugala, “Method for inclusion of low frequency contributions in numerical representation of atmospheric turbulence,” in Propagation of High-Energy Laser Beams Through the Earth’s Atmosphere, P. B. Ulrich, E. Wilson, eds., Proc. SPIE1221, 183–192 (1990). [CrossRef]
  15. R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 202–224 (1992). [CrossRef]
  16. M. Lilley, K. Strawbridge, S. Lovejoy, D. Schertzer, “Direct LIDAR evidence for the anisotropic scaling of atmospheric passive scalar variability,” Geophys. Res. Abstract 5, 11589 (2003).
  17. H. Jakobsson, “Simulations of time series of atmospherically distorted wave fronts,” Appl. Opt. 35, 1561–1565 (1996). [CrossRef] [PubMed]
  18. B. Lopez, M. Sarazin, “The ESO atmospheric temporal coherence monitor dedicated to high angular resolution imaging,” Astron. Astrophys. 276, 320–326 (1993).
  19. I. Arad, V. S. L’vov, I. Procaccia, “Correlation functions in isotropic and anisotropic turbulence. The role of the symmetry group,” Phys. Rev. E. 59, 6753–6765 (1999). [CrossRef]
  20. M. Sarazin, F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).
  21. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55, 1427–1435 (1965). [CrossRef]
  22. M. C. Roggemann, B. M. Welsh, Imaging through Turbulence (CRC Press, New York, 1996).
  23. R. W. Wilson, N. O’Mahony, C. Packhan, M. Azzaro, “The seeing at the William Herschel Telescope,” Mon. Not. R. Astron. Soc. 309, 379–387 (1999). [CrossRef]
  24. R. Brightwell, L. A. Fisk, D. S. Greenberg, T. Hudson, M. Levenhagen, A. B. Maccabe, R. Riesen, “Massively parallel computing using commodity components,” Parallel Comput. 26, 243–266 (2000). [CrossRef]
  25. J. L. Caccia, M. Azouit, J. Vernin, “Wind and Cn2 profiling by two-color stellar scintillation with atmospheric dispersion,” Appl. Opt. 27, 2229–2235 (1988). [CrossRef] [PubMed]
  26. R. E. Hufnagel, “Variations of atmospheric turbulence,” in Optical Propagation through Turbulence, OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1974), paper WA1.
  27. G. R. Ochs, T. Wang, R. S. Lawrence, “Refractive-turbulence profiles measured by one-dimensional spatial filtering of scintillations,” Appl. Opt. 15, 2504–2510 (1976). [CrossRef] [PubMed]
  28. V. A. Kluckers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised SCIDAR technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998). [CrossRef]
  29. R. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, New York, 1965).
  30. D. Dravins, L. Lindegren, E. Mezey, “Atmospheric intensity scintillation of stars. I. Statistical distribution and temporal statistics,” Publ. Astron. Soc. Pac. 109, 172–207 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited