OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 23 — Aug. 10, 2004
  • pp: 4590–4597

Phase-Matching and Femtosecond Difference-Frequency Generation in the Quaternary Semiconductor AgGaGe5Se12

V. Petrov, F. Noack, V. Badikov, G. Shevyrdyaeva, V. Panyutin, and V. Chizhikov  »View Author Affiliations

Applied Optics, Vol. 43, Issue 23, pp. 4590-4597 (2004)

View Full Text Article

Acrobat PDF (147 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present data on the linear (transmission, index of refraction) and nonlinear (second-order susceptibility) optical properties of the quaternary semiconductor AgGaGe5Se12 with orthorhombic symmetry—a solid solution in the AgxGaxGe1−xSe2 system with x = 0.17. The nonlinear coefficients are estimated from phase-matched second-harmonic generation near 3 μm. After numerical analysis of the phase-matching configurations for three-wave nonlinear interactions, the first experimental results on difference-frequency mixing, producing tunable (4–7.5-μm) femtosecond pulses at a 1-kHz repetition rate, are described. The pulses of only five optical cycles (FWHM = 84 fs) are generated near 5 μm with energy of 0.5 μJ. Because of its higher damage threshold, larger birefringence and bandgap, and greater variety of phase-matching schemes, AgGaGe5Se12 could become an alternative to AgGaS2 and AgGaSe2, more widely used in high-power and specific applications.

© 2004 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

V. Petrov, F. Noack, V. Badikov, G. Shevyrdyaeva, V. Panyutin, and V. Chizhikov, "Phase-Matching and Femtosecond Difference-Frequency Generation in the Quaternary Semiconductor AgGaGe5Se12," Appl. Opt. 43, 4590-4597 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. F. Seifert, V. Petrov, and M. Woerner, “Solid-state laser system for the generation of mid-infrared femtosecond pulses tunable from 3.3 to 10 μm,” Opt. Lett. 19, 2009–2011 (1994).
  2. B. Golubovic and M. K. Reed, “All-solid-state generation of 100-kHz tunable mid-infrared 50-fs pulses in Type I and Type II AgGaS2,” Opt. Lett. 23, 1760–1762 (1998).
  3. F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185, 177–183 (2000).
  4. G. C. Bhar and R. C. Smith, “Optical properties of II-IV-V2 and I-III-VI2 crystals with particular reference to transmission limits,” Phys. Status Solidi A 13, 157–168 (1972).
  5. V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A 3, R1–R19 (2001).
  6. G. C. Catella and D. Burlage, “Crystal growth and optical properties of AgGaS2 and AgGaSe2,” Mater. Res. Bull. (July 1998), pp. 28–36.
  7. V. V. Badikov, I. N. Matveev, S. M. Pshenichnikov, O. V. Rychik, N. K. Trotsenko, N. D. Ustinov, and S. I. Shcherbakov, “Growth and nonlinear properties of HgGa2S4,” Sov. J. Quantum Electron. 10, 1300–1301 (1980)[Kvant. Elektron. (Moscow) 7, 2235–2237 (1980)].
  8. P. G. Schunemann and T. M. Pollak, “Ultralow gradient HGF-grown ZnGeP2 and CdGeAs2 and their optical properties,” Mater. Res. Bull. (July 1998), pp. 23–27.
  9. V. V. Badikov, A. G. Tyulyupa, G. S. Shevyrdyaeva, and S. G. Sheina, “Solid solutions in the AgGaS2-GeS2 and AgGaSe2-GeSe2 systems,” Inorg. Mater. 27, 177–180 (1991)[Dokl. Akad. Nauk SSSR Neorg. Mater. 27, 248–252 (1991)].
  10. N. C. Fernelius, “Properties of gallium selenide single crystal,” Prog. Cryst. Growth Charact. 28, 275–353 (1994).
  11. P. Hamm, M. Lim, and R. M. Hochstrasser, “Vibrational energy relaxation of the cyanide ion in water,” J. Chem. Phys. 107, 10,523–10,531 (1997).
  12. H. Maekawa, K. Tominaga, and D. Podenas, “Generation of 55-fs-mid-infrared pulses with 300 cm−1-spectral width and μJ-pulse energy,” Jpn. J. Appl. Phys. 41, L329–L331 (2002).
  13. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, “Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm,” J. Opt. Soc. Am. B 17, 2086–2094 (2000).
  14. J. M. Fraser, I. W. Cheung, F. Legare, D. M. Villeneuve, J. P. Likforman, M. Joffre, and P. B. Corkum, “High-energy subpicosecond pulse generation from 3 to 20 μm,” Appl. Phys. B 74 (Suppl.), S153–S156 (2002).
  15. J. Song, J. F. Xia, Z. Zhang, and D. Strickland, “Mid-infrared pulses generated from the mixing output of an amplified, dual-wavelength Ti:sapphire system,” Opt. Lett. 27, 200–202 (2002).
  16. H. Hahn and G. Strick, “Über quaternäre Chalkogenide zinkblendeähnlicher Struktur,” Naturwissenschaften 54, 225–226 (1967).
  17. R. G. Goodchild, O. H. Hughes, and J. C. Woolley, “Crystal structure of I III IV Se4 compounds,” Phys. Status Solidi A 68, 239–244 (1981).
  18. O. H. Hughes, J. C. Woolley, S. A. Lopez-Rivera, and B. R. Pamplin, “Quaternary adamantine selenides and tellurites of the form I III IV VI4,” Solid State Commun. 35, 573–575 (1980).
  19. R. G. Goodchild, O. H. Hughes, S. A. Lopez-Rivera, and J. A. Woolley, “Energy gap values by optical absorption in I III IV Se4 compounds,” Can. J. Phys. 60, 1096–1100 (1980).
  20. B. R. Pamplin, T. Ohachi, S. Maeda, P. Negrete, T. P. Elworthy, R. Sanderson, and H. J. Whitlow, “Solubility of the group IV chalcogenides in I-III-VI2 compounds,” in Proceedings of Third International Conference on Ternary Compounds, G. D. Holah, ed. (Institute of Physics, London, 1977), pp. 35–42.
  21. E. A. Pobedimskaya, L. L. Alimova, N. V. Belov, and V. V. Badikov, “Crystal structures of silver germanogallium sulfide and GeS2,” Sov. Phys. Dokl. 26, 259–260 (1981)[Dokl. Akad. Nauk SSSR 257, 611–614 (1981)].
  22. I. D. Olekseyuk, A. V. Gulyak, L. V. Lisa, G. P. Gorgut, and A. F. Lomzin, “Crystal chemical properties and preparation of single crystals of AgGaSe2-GeSe2 γ-solid solutions,” J. Alloys Compd. 241, 187–190 (1996).
  23. An American National Standard, IEEE Standard on Piezoelectricity, ANSI/IEEE Std. 176–1987 (Institute of Electrical and Electronics Engineers, New York, 1988).
  24. V. Petrov, V. Badikov, G. Shevyrdyaeva, V. Panyutin, and V. Chizhikov, “Phase-matching properties and optical parametric amplification in single crystals of AgGaGeS4,” Opt. Mater. (to be published).
  25. N. Zhavoronkov, V. Petrov, and F. Noack, “Powerful and tunable operation of a 1–2-kHz repetition-rate gain-switched Cr:forsterite laser and its frequency doubling,” Appl. Opt. 38, 3285–3293 (1999).
  26. Y. M. Andreev, V. V. Badikov, V. G. Voevodin, L. G. Geiko, P. P. Geiko, M. V. Ivashchenko, A. I. Karapuzikov, and I. V. Sherstov, “Radiation resistance of nonlinear crystals at a wavelength of 9.55 μm,” Quantum Electron. 31, 1075–1078 (2001)[Kvant. Elektron. (Moscow) 31, 1075–1078 (2001)].

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited