OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 23 — Aug. 10, 2004
  • pp: 4603–4610

Passive remote sensing of pollutant clouds by Fourier-transform infrared spectrometry: signal-to-noise ratio as a function of spectral resolution

Roland Harig  »View Author Affiliations


Applied Optics, Vol. 43, Issue 23, pp. 4603-4610 (2004)
http://dx.doi.org/10.1364/AO.43.004603


View Full Text Article

Enhanced HTML    Acrobat PDF (478 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In a passive infrared remote sensing measurement, the spectral radiance difference caused by the presence of a pollutant cloud is proportional to the difference between the temperature of the cloud and the brightness temperature of the background (first-order approximation). In many cases, this difference is of the order of a few kelvins. Thus the measured signals are small, and the signal-to-noise ratio (SNR) is one of the most important quantities to be optimized in passive remote sensing. A model for the SNR resulting from passive remote sensing measurements with a Fourier-transform infrared spectrometer is presented. Analytical expressions for the SNR of a single Lorentzian line for the limiting cases of high and low spectral resolutions are derived. For constant measurement time the SNR increases with decreasing spectral resolution, i.e., low spectral resolutions yield the highest SNRs. For a single scan of the interferometer, a spectral resolution that maximizes the SNR exists. The calculated SNRs are in good agreement with the measured SNRs.

© 2004 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1120) Remote sensing and sensors : Air pollution monitoring
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6340) Spectroscopy : Spectroscopy, infrared

History
Original Manuscript: September 19, 2003
Revised Manuscript: April 5, 2004
Published: August 10, 2004

Citation
Roland Harig, "Passive remote sensing of pollutant clouds by Fourier-transform infrared spectrometry: signal-to-noise ratio as a function of spectral resolution," Appl. Opt. 43, 4603-4610 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-23-4603


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Connes, “Recherches sur la spectroscopie par la transformation de Fourier,” Rev. Opt. Theor. Exp. 40, 41–79, 116–140, 171–190, 231–265 (1961).
  2. C. L. Wyatt, “CIRRIS-1A interferometer: radiometric analysis,” Appl. Opt. 28, 5069–5072 (1989). [CrossRef] [PubMed]
  3. P. R. Griffiths, “Fourier transform infrared spectrometry at low resolution: how low can you go?,” in Ninth International Conference on Fourier Transform Spectroscopy, J. E. Bertie, H. Wieser, eds., Proc. SPIE2089, 2–8 (1993). [CrossRef]
  4. R. J. Combs, “Thermal stability evaluation for passive FTIR spectrometry,” Field Anal. Chem. Technol. 3, 81–94 (1999). [CrossRef]
  5. D. F. Flanigan, “Vapor-detection sensitivity as a function of spectral resolution for a single Lorentzian band,” Appl. Opt. 34, 2636–2639 (1995). [CrossRef] [PubMed]
  6. R. Beer, Remote Sensing by Fourier Transform Spectrometry (Wiley, New York, 1992).
  7. D. F. Flanigan, “Prediction of the limits of detection of hazardous vapors by passive infrared with the use of Modtran,” Appl. Opt. 35, 6090–6098 (1996). [CrossRef] [PubMed]
  8. A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: A Moderate Resolution Model for LOWTRAN 7,” AFGL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).
  9. H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, L. S. Rothman, “FASCODE—Fast Atmospheric Signature Code (Spectral Transmittance and Radiance),” Tech. Rep. AFGL-TR-78-0081 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1978).
  10. W. H. Steel, “Interferometers without collimation for Fourier spectroscopy,” J. Opt. Soc. Am. 54, 151–156 (1964). [CrossRef]
  11. M. V. R. K. Murty, “Some more aspects of the Michelson interferometer with cube corners,” J. Opt. Soc. Am. 50, 7–10 (1960). [CrossRef]
  12. J. Kauppinen, P. Saarinen, “Line-shape distortions in misaligned cube-corner interferometers,” Appl. Opt. 31, 69–74 (1992). [CrossRef] [PubMed]
  13. P. Saarinen, J. Kauppinen, “Spectral line-shape distortions in Michelson interferometers due to off-focus radiation source,” Appl. Opt. 31, 2353–2359 (1992). [CrossRef] [PubMed]
  14. R. Windpassinger, “Quantitative analysis of flue gas FTIR-spectra employing a new mathematical method to determine the instrumental line shape,” in Spectroscopic Atmospheric Environmental Monitoring Techniques, K. Schäfer, ed., Proc. SPIE3493, 64–70 (1998). [CrossRef]
  15. G. Bianchini, P. Raspollini, “Characterisation of instrumental line shape distortions due to path difference dependent phase errors in a Fourier transform spectrometer,” Infrared Phys. Technol. 41, 287–292 (2000). [CrossRef]
  16. F. Hase, T. Blumenstock, C. Paton-Walsh, “Analysis of the instrumental line shape of high-resolution Fourier transform IR spectrometers with gas cell measurements and new retrieval software,” Appl. Opt. 38, 3417–3422 (1999). [CrossRef]
  17. R. A. Hanel, B. J. Conrath, D. E. Jennings, R. E. Samuelson, Exploration of the Solar System by Infrared Remote Sensing (Cambridge U. Press, Cambridge, UK, 1992).
  18. J. Kauppinnen, J. Partanen, Fourier Transforms in Spectroscopy (Wiley-VCH, Berlin, 2001). [CrossRef]
  19. P. R. Griffiths, J. de Haseth, Fourier Transform Infrared Spectroscopy (Wiley, New York, 1986).
  20. L. Rothman, C. Rinsland, A. Goldman, S. Massie, D. Edwards, J. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Mandin, J. Schroeder, A. McCann, R. Gamache, R. Wattson, K. Yoshino, K. Chance, K. Jucks, L. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  21. The author is preparing a manuscript to be called “Remote sensing of airborne pollutants by passive FTIR spectrometry: method for the retrieval of the column density.”
  22. R. Harig, G. Matz, P. Rusch, “Scanning infrared remote sensing system for identification, visualization, and quantification of airborne pollutants,” in Instrumentation for Air Pollution and Global Atmospheric Monitoring, J. O. Jensen, R. L. Spellicy, eds., Proc. SPIE4574, 83–94 (2002). [CrossRef]
  23. J.-M. Thériault, “Modeling the responsivity and self-emission of a double-beam Fourier-transform infrared interferometer,” Appl. Opt. 38, 505–515 (1999). [CrossRef]
  24. R. Harig, G. Matz, “Toxic cloud imaging by infrared spectrometry: a scanning FTIR system for identification and visualization,” Field Anal. Chem. Technol. 5, 75–90 (2001). [CrossRef]
  25. S. P. Davis, M. C. Abrams, J. W. Brault, Fourier Transform Spectrometry (Academic, San Diego, Calif., 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited