OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 23 — Aug. 10, 2004
  • pp: 4611–4624

Comparison of Cartesian Grid Configurations for Application of the Finite-Difference Time-Domain Method to Electromagnetic Scattering by Dielectric Particles

Ping Yang, George W. Kattawar, Kuo-Nan Liou, and Jun Q. Lu  »View Author Affiliations


Applied Optics, Vol. 43, Issue 23, pp. 4611-4624 (2004)
http://dx.doi.org/10.1364/AO.43.004611


View Full Text Article

Acrobat PDF (390 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two grid configurations can be employed to implement the finite-difference time-domain (FDTD) technique in a Cartesian system. One configuration defines the electric and magnetic field components at the cell edges and cell-face centers, respectively, whereas the other reverses these definitions. These two grid configurations differ in terms of implication on the electromagnetic boundary conditions if the scatterer in the FDTD computation is a dielectric particle. The permittivity has an abrupt transition at the cell interface if the dielectric properties of two adjacent cells are not identical. Similarly, the discontinuity of permittivity is also observed at the edges of neighboring cells that are different in terms of their dielectric constants. We present two FDTD schemes for light scattering by dielectric particles to overcome the above-mentioned discontinuity on the basis of the electromagnetic boundary conditions for the two Cartesian grid configurations. We also present an empirical approach to accelerate the convergence of the discrete Fourier transform to obtain the field values in the frequency domain. As a new application of the FDTD method, we investigate the scattering properties of multibranched bullet-rosette ice crystals at both visible and thermal infrared wavelengths.

© 2004 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.3920) Atmospheric and oceanic optics : Meteorology
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.1310) Scattering : Atmospheric scattering
(290.5850) Scattering : Scattering, particles

Citation
Ping Yang, George W. Kattawar, Kuo-Nan Liou, and Jun Q. Lu, "Comparison of Cartesian Grid Configurations for Application of the Finite-Difference Time-Domain Method to Electromagnetic Scattering by Dielectric Particles," Appl. Opt. 43, 4611-4624 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-23-4611


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. N. Liou, Introduction to Atmospheric Radiation (Academic, San Diego, Calif., 2002).
  2. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds., Light Scattering by Nonspherical Particles (Academic, San Diego, Calif., 2000).
  3. F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 775–824 (2003).
  4. K. S. Yee, “Numerical solution of initial boundary problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat. AP-14, 302–307 (1966).
  5. A. Taflove, Advances in Computational Electromagnetics (Artech House, Boston, Mass., 1998).
  6. A. Taflove and S. C. Hagness, Computational Electromagnetics, 2nd ed. (Artech House, Boston, Mass., 2000).
  7. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, Fla., 1993).
  8. P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085 (1996).
  9. P. Yang, K. N. Liou, M. I. Mishchenko, and B.-C. Gao, “An efficient finite-difference time domain scheme for light scattering by dielectric particles: application to aerosols,” Appl. Opt. 39, 3727–3737 (2000).
  10. W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with perfectly matched layer absorbing boundary conditions,” Appl. Opt. 38, 3141–3151 (1999).
  11. W. Sun and Q. Fu, “Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices,” Appl. Opt. 39, 5569–5578 (2000).
  12. K. Aydin, “Centimeter and millimeter wave scattering from nonspherical hydrometeors,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. Hovenier, and L. D. Travis, eds. (Academic, San Diego, Calif., 2000), pp. 451–479.
  13. K. Aydin and C. Tang, “Millimeter wave radar from model ice crystal distributions,” IEEE Trans. Geosci. Remote Sens. 35, 140–146 (1997).
  14. S. C. Hill, G. Videen, W. B. Sun, and Q. Fu, “Scattering and internal fields of a microsphere that contains a satiable absorber: finite-difference time domain simulations,” Appl. Opt. 40, 5487–5494 (2001).
  15. K. L. Shlager and J. B. Schneider, “A survey of the finite-difference time domain literature,” in Advances in Computational Electrodynamics, A. Taflove, ed. (Artech House, Boston, Mass., 1998), pp. 1–62.
  16. T. G. Jurgens, A. Taflove, K. Umashankar, and T. G. Moore, “Finite-difference time domain modeling of curved surfaces,” IEEE Trans. Antennas Propagat. 40, 357–366 (1992).
  17. R. Pregla and W. Pascher, “The method of lines,” in Numerical Techniques for Microwave and Millimeter-Wave Passive Structure, T. Itoh, ed. (Wiley, New York, 1989), pp. 381–446.
  18. C.-T. Tai, Dyadic Green Functions in Electromagnetic Theory, 2nd ed. (Institute of Electrical and Electronics Engineers New York, 1994).
  19. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, Cambridge, UK, 2002).
  20. A. Sommerfeld, Partial Differential Equations in Physics (Academic, New York, 1949).
  21. C. M. Furse and O. P. Gandhi, “Why the DFT is faster than the FFT for FDTD time-to-frequency domain conversions,” IEEE Microwave Guid. Wave Lett. 5, 326–328 (1995).
  22. J. P. Berenger, “A perfect matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
  23. P. Yang, M. G. Mlynczak, H. L. Wei, D. P. Kratz, B. A. Baum, Y. X. Hu, W. J. Wiscombe, A. Heidinger, and M. I. Mishchenko, “Spectral signature of cirrus clouds in the far-infrared region: single-scattering calculation and radiative sensitivity study,” J. Geophys. Res. 108D, 4569, 10.1029/2002JD003291 (2003).
  24. K. Chamaillard, S. G. Jennings, C. Kleefeld, D. Ceburnis, and Y. J. Yoon, “Light backscattering and scattering by nonspherical sea-salt acrosols,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 577–597 (2003).
  25. J. Iaquinta, H. Isaka, and P. Personne, “Scattering phase functions of bullet rosette ice crystals,” J. Atmos. Sci. 52, 1401–1413 (1995).
  26. A. J. Heymsfield and J. Iaquinta, “Cirrus crystal terminal velocities,” J. Atmos. Sci. 57, 916–938 (2000).
  27. P. Yang and K. N. Liou, “Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, San Diego, Calif., 2000), pp 174–221.
  28. P. Yang and K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71, 223–248 (1998).
  29. M. D. Chou, K. T. Lee, S.-C. Tsay, and Q. Fu, “Parameterization for cloud longwave scattering for use in atmospheric models,” J. Clim. 12, 159–169 (1999).
  30. S. Warren, “Optical constants of ice from ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984).
  31. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited