OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 24 — Aug. 20, 2004
  • pp: 4718–4722

Characterization of used mineral oil condition by spectroscopic techniques

Jarmo Vanhanen, Marcus Rinkiö, Jukka Aumanen, Jouko Korppi-Tommola, Erkki Kolehmainen, Tuula Kerkkänen, and Päivi Törmä  »View Author Affiliations


Applied Optics, Vol. 43, Issue 24, pp. 4718-4722 (2004)
http://dx.doi.org/10.1364/AO.43.004718


View Full Text Article

Enhanced HTML    Acrobat PDF (99 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical absorption, fluorescence, and quantitative 13C NMR spectroscopy have been used to study the degradation of mineral gearbox oil. Samples of used oil were collected from field service. Measured absorption, fluorescence, and quantitative 13C NMR spectra of used oils show characteristic changes from the spectra of a fresh oil sample. A clearly observable, ∼20-nm blueshift of the fluorescence emission occurs during the early stages of oil use and correlates with changes in intensity of some specific 13C NMR resonance lines. These changes correlate with oil age because of the connection between the blueshift and breaking of the larger conjugated hydrocarbons of oil as a result of use.

© 2004 Optical Society of America

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(300.1030) Spectroscopy : Absorption
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

History
Original Manuscript: January 28, 2004
Published: August 20, 2004

Citation
Jarmo Vanhanen, Marcus Rinkiö, Jukka Aumanen, Jouko Korppi-Tommola, Erkki Kolehmainen, Tuula Kerkkänen, and Päivi Törmä, "Characterization of used mineral oil condition by spectroscopic techniques," Appl. Opt. 43, 4718-4722 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-24-4718


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Poley, “Diesel engine lube analysis,” in CRC Handbook of Lubrication and Tribology, E. R. Booser, ed. (CRC Press, Boca Raton, Fla., 1994), Vol. III, pp. 33–41.
  2. A. J. Caines, R. F. Haycock, Automotive Lubricants Reference Book (Society of Automotive Engineers, Warrendale, Pa., 1996).
  3. D. J. Smolenski, S. E. Schwarz, “Automotive engine-oil condition monitoring,” in CRC Handbook of Lubrication and Tribology, E. R. Booser, ed. (CRC Press, Boca Raton, Fla., 1994), Vol. III, pp. 17–32.
  4. G. S. Kapur, S. Mukherjee, A. S. Sarpal, S. K. Jain, “Development of a 13C-NMR spectroscopic method for estimation of heavy alkylated benzene in industrial oils using stepwise multiple linear regression,” Lubr. Eng. 54(5), 21–28 (1998).
  5. X. Maleville, D. Faure, A. Legros, J. C. Hipeaux, “Oxidation of mineral basestocks of petroleum origin. Relationship between chemical composition, thickening and oxidized degradation products,” Rev. Inst. Fr. Pet. 50, 405–443 (1995).
  6. R. Gerhards, “Comparison of modern NMR-multipulse experiments in the characterization of products from coal and mineral oils,” Fresenius Z. Anal. Chem. 316, 231–238 (1983). [CrossRef]
  7. O. C. Mullins, S. Mitra-Kirtley, Y. Zhu, “The electronic absorption edge of petroleum,” Appl. Spectrosc. 46, 1405–1411 (1992). [CrossRef]
  8. N. Robinson, “Monitoring oil degradation with infrared spectroscopy,” Wearcheck Tech. Bull. 18 (1998), http://www.wearcheck.com .
  9. T. D. Downare, O. C. Mullins, “Visible and near-infrared fluorescence of crude oils,” Appl. Spectrosc. 49, 754–764 (1995). [CrossRef]
  10. B. Pradier, C. Largeau, S. Derenne, L. Martinez, P. Bertrand, Y. Pouet, “Chemical basis of fluorescence alteration of oils and kerogens. I. Microfluorimetry of oil and its isolated fractions: relationship with chemical structure,” Org. Geochem. 16, 451–460 (1989). [CrossRef]
  11. C. Y. Ralston, X. Wu, O. C. Mullins, “Quantum yield of crude oils,” Appl. Spectrosc. 50, 1563–1568 (1996). [CrossRef]
  12. P. Camagni, A. Colombo, C. Koehler, N. Omenetto, P. Qi, G. Rossi, “Fluorescence response of mineral oils: spectral yield versus absorption and decay time,” Appl. Opt. 30, 26–35 (1991). [CrossRef] [PubMed]
  13. M. Pouzar, T. Černohorský, A. Krejčcová, “Determination of metals in lubricating oils by x-ray fluorescence spectrometry,” Talanta 54, 829–835 (2001). [CrossRef]
  14. Y. Zhu, O. C. Mullins, “Temperature dependence of fluorescence of crude oils and related products,” Energy Fuels 6, 545–552 (1992). [CrossRef]
  15. D. Patra, A. K. Mishra, “Concentration dependent red shift: qualitative and quantitative investigation of motor oils by synchronous fluorescence scan,” Talanta 53, 783–790 (2001). [CrossRef]
  16. D. Patra, A. K. Mishra, “Total synchronous fluorescence scan spectra of petroleum products,” Anal. Bioanal. Chem. 374, 304–309 (2002). [CrossRef]
  17. P. John, I. Soutar, “Identification of crude oils by synchronous excitation spectrofluorimetry,” Anal. Chem. 48, 520–524 (1976). [CrossRef]
  18. E. Hegazi, A. Hamdan, “Estimation of crude oil grade using time-resolved fluorescence spectra,” Talanta 56, 989–995 (2002). [CrossRef]
  19. A. G. Ryder, T. J. Glynn, M. Feely, A. J. G. Barwise, “Characterisation of crude oils using fluorescence lifetime data,” Spectrochim. Acta A 58, 1025–1037 (2002). [CrossRef]
  20. A. G. Ryder, “Quantitative analysis of crude oils by fluorescence lifetime and steady state measurements using 380-nm excitation,” Appl. Spectrosc. 56, 107–116 (2002). [CrossRef]
  21. D. Barr, “Modern wind turbines: a lubrication challenge,” Mach. Lubr. Mag. (2002), http://www.machinerylubrication.com .
  22. B. K. Sharma, A. J. Stipanovic, “Pressure viscosity coefficient of lubricant base oils as estimated by nuclear magnetic resonance spectroscopy,” Ind. Eng. Chem. Res. 41, 4889–4898 (2002). [CrossRef]
  23. M. Hernándes Viñas, J. L. Escudero, A. López Campillo, E. Martínez Murciano, T. Montoro, “Spectroscopic sensor as a mineral oil indicator,” Laser Chem. 12, 65–73 (1992). [CrossRef]
  24. J. D. Roberts, R. Stewart, M. C. Caserio, Organic Chemistry (Benjamin, New York, 1971).
  25. S. S. Wang, H.-S. Lee, D. J. Smolenski, “The development of in situ electrochemical oil-condition sensors,” Sens. Actuators B 17, 179–185 (1994). [CrossRef]
  26. A. Basu, A. Berndorfer, C. Buelna, J. Campbell, K. Ismail, Y. Lin, L. Rodriguez, S. S. Wang, “Smart sensing of oil degradation and oil level measurements in gasoline engines,” in 2000 SAE International Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 2000), paper 011366. [CrossRef]
  27. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983). [CrossRef]
  28. S. E. Schwartz, D. J. Smolenski, “Development of an automatic engine oil-change indicator system,” in 1987 SAE International Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1987), paper 870403. [CrossRef]
  29. G. S. Kapur, S. Mukherjee, A. S. Sarpal, S. K. Jain, “Development of a 13C-NMR spectroscopic method for estimation of heavy alkylated benzene in industrial oils using stepwise multiple linear regression,” Lubric. Eng. 54, 21–28 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited