OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 24 — Aug. 20, 2004
  • pp: 4739–4744

Effects of Hydrostatic Pressure on Phase and Group Modal Birefringence in Microstructured Holey Fibers

Marcin Szpulak, Tadeusz Martynkien, and Waclaw Urbanczyk  »View Author Affiliations


Applied Optics, Vol. 43, Issue 24, pp. 4739-4744 (2004)
http://dx.doi.org/10.1364/AO.43.004739


View Full Text Article

Acrobat PDF (117 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We calculated the sensitivity of phase (d<i>B</i>/d<i>p</i>) and group (d<i>G</i>/d<i>p</i>) modal birefringence to hydrostatic pressure versus wavelength in two birefringent holey fibers of different construction, where <i>B</i> is the phase modal birefringence, <i>G</i> is the group modal birefringence, and <i>p</i> is the pressure applied to the fiber. The contributions of the geometrical effects that were related only to deformation of the holey structure and the stress-related contribution to the overall pressure sensitivities were analyzed separately. Our results show that these two factors decrease the phase modal birefringence in both structures, which results in negative signs of d<i>B</i>/d<i>p</i> and d<i>G</i>/d<i>p</i>. Furthermore, we demonstrate that the geometrical effects are much weaker than the stress-related effects and contribute only a few percent to the overall pressure sensitivity.

© 2004 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining

Citation
Marcin Szpulak, Tadeusz Martynkien, and Waclaw Urbanczyk, "Effects of Hydrostatic Pressure on Phase and Group Modal Birefringence in Microstructured Holey Fibers," Appl. Opt. 43, 4739-4744 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-24-4739


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
  2. F. Poli, A. Cucinotta, M. Fuochi, S. Selleri, and L. Vincentia, “Characterization of microstructured optical fibers for wideband dispersion compensation,” J. Opt. Soc. Am. A 20, 1958–1962 (2003).
  3. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. Martin Man, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148–2155 (2002).
  4. T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, “Supercontinuum generation at 1.55 m in a dispersion-flattened polarization-maintaining photonic crystal fiber,” Opt. Express 11, 1537–1540 (2003), http://www.opticsexpress.org.
  5. K. Furusawa, A. N. Malinowski, J. H. Price, T. M. Monro, J. K. Sahu, J. Nilsson, and D. J. Richardson, “Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding,” Opt. Express 9, 714–720 (2001), http://www.opticsexpress.org.
  6. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, “High-power air-clad large-mode-area photonic crystal fiber laser,” Opt. Express 11, 818–823 (2003), http://www.opticsexpress.org.
  7. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
  8. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
  9. M. J. Steel and R. M. Osgood, Jr., “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26, 229–231 (2001).
  10. A. Ferrando and J. J. Miret, “Single-polarization single-mode intraband guidance in supersquare photonic crystal fibers,” Appl. Phys. Lett. 78, 3184–3186 (2001).
  11. K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” Technol. Lett. 15, 1384–1386 (2003).
  12. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12, 854–858 (2001).
  13. R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmans, and H. Thienpont, “Sensitivity of holey fiber based sensors,” in Proceedings of 5th International Conference on Transparent Optical Networks and 2nd European Symposium on Photonic Crystals (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003), pp. 340–343.
  14. M. Szpulak, W. Urbańczyk, T. Martynkien, J. Wójcik, and W. J. Bock, “Temperature sensitivity of the photonic crystal holey fibers,” in XIth Conference on Optical Fibers and Their Applications VIII, J. Dorosz and R. S. Romaniuk, eds., Proc. SPIE 5028, 108–114 (2003).
  15. M. Szpulak, T. Martynkien, W. Urbańczyk, J. Wójcik, and W. J. Bock, “Influence of temperature on birefringence and polarization mode dispersion in photonic crystal holey fibers,” in Proceedings of the 4th International Conference on Transparent Optical Networks and European Symposium on Photonic Crystals (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 89–92.
  16. W. Urbańczyk, M. Nawrocka, and W. J. Bock, “Digital demodulation system for low-coherence interferometric sensors based on highly birefringent fibers,” Appl. Opt. 40, 6618–6625 (2001).
  17. Z. Zhu and T. G. Brown, “Stress-induced birefringence in microstructured optical fibers,” Opt. Lett. 28, 2306–2308 (2003).
  18. M. Koshiba, S. Maruyama, and K. Hirayama, “A vector finite element method with the higher order mixed-interpolation-type triangular elements for optical waveguide problems,” J. Lightwave. Technol. 12, 495–502 (1994).
  19. M. Koshiba and K. Saitoh, “Numerical verification of degeneracy in hexagonal photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 1313–1315 (2001).
  20. W. Urbanczyk, T. Martynkien, and W. J. Bock, “Dispersion effects in elliptical core highly birefringent fibers,” Appl. Opt. 40, 1911–1920 (2001).
  21. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986).
  22. R. B. Dyott, Elliptical Fiber Waveguides (Artech House, Boston, Mass., 1995).
  23. T. Martynkien, W. Urbańczyk, and W. J. Bock, “Spectral dependence of sensitivity of highly birefringent fibers to temperature elongation and hydrostatic pressure,” Optik 111, 97–102 (2000).
  24. W. J. Bock, M. S. Nawrocka, and W. Urbańczyk, “Highly sensitive fiber-optic sensor for dynamic pressure measurements,” IEEE Trans. Instrum. Meas. Technol. 50, 1085–1088 (2001).
  25. H. M. Xie, Ph. Dabkiewicz, R. Ulrich, and K. Okamoto, “Side-hole fiber for fiber-optic pressure sensing,” Opt. Lett. 11, 333–335 (1986).
  26. N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 10, 341–348 (2002), http://www.opticsexpress.org.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited