OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 24 — Aug. 20, 2004
  • pp: 4753–4767

Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers

Stefan Bjurshagen and Ralf Koch  »View Author Affiliations

Applied Optics, Vol. 43, Issue 24, pp. 4753-4767 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (336 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An analytical model of cw quasi-three-level lasers that includes the influence of energy-transfer upconversion (ETU) has been developed. The results of the general output modeling were applied to a laser with Gaussian beams, and rigorous numerical calculations have been made to study the influence of ETU on threshold, output power, spatial distribution of population-inversion density, and fractional thermal loading. The model was applied to a laser operating at 946 nm in Nd:YAG, where the dependence of laser-beam size on laser performance was investigated in particular. A simple model for the degradation of laser-beam quality from a transversally varying saturated gain is proposed that is in good agreement with measurements of the laser in a plane-plane cavity.

© 2004 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.6810) Lasers and laser optics : Thermal effects

Original Manuscript: December 15, 2003
Revised Manuscript: April 27, 2004
Published: August 20, 2004

Stefan Bjurshagen and Ralf Koch, "Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers," Appl. Opt. 43, 4753-4767 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Y. Fan, R. Byer, “Continuous-wave operation of a room-temperature, diode-laser-pumped, 946-nm Nd:YAG laser,” Opt. Lett. 12, 809–811 (1987). [CrossRef] [PubMed]
  2. W. P. Risk, W. Length, “Room-temperature, continuous-wave, 946-nm Nd:YAG laser pumped by laser-diode arrays and intracavity frequency doubling to 473 nm,” Opt. Lett. 12, 993–995 (1987). [CrossRef] [PubMed]
  3. P. Zeller, P. Peuser, “Efficient, multiwatt, continuous-wave laser operation on the 4F3/2 → 4I9/2 transitions of Nd:YVO4 and Nd:YAG,” Opt. Lett. 25, 34–36 (2000). [CrossRef]
  4. C. Czeranowsky, E. Heumann, G. Huber, “All-solid-state continuous-wave frequency-doubled Nd:YAG-BiBO laser with 2.8-W output power at 473 nm,” Opt. Lett. 28, 432–434 (2003). [CrossRef] [PubMed]
  5. Y. Guyot, H. Manan, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4 and LaMgAL11O19,” Phys. Rev. B 51, 784–799 (1995). [CrossRef]
  6. T. Chuang, H. R. Verdún, “Energy-transfer up-conversion and excited-state absorption of laser-radiation in Nd:YLF laser crystals,” IEEE J. Quantum Electron. 32, 79–91 (1996). [CrossRef]
  7. S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998). [CrossRef]
  8. M. Pollnau, P. J. Hardman, W. A. Clarkson, D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147, 203–211 (1998). [CrossRef]
  9. M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58, 16,076–16,092 (1998). [CrossRef]
  10. P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647–655 (1999). [CrossRef]
  11. T. Y. Fan, R. L. Byer, “Modeling and cw operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987). [CrossRef]
  12. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423 (1988). [CrossRef]
  13. T. Taira, W. M. Tulloch, R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt. 36, 1867–1874 (1997). [CrossRef] [PubMed]
  14. Y. F. Chen, Y. P. Lan, S. C. Wang, “Influence of energy-transfer upconversion on the performance of high-power diode-end-pumped cw lasers,” IEEE J. Quantum Electron. 36, 615–619 (2000). [CrossRef]
  15. Y. F. Chen, “Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers,” J. Opt. Soc. Am. B 17, 1835–1840 (2000). [CrossRef]
  16. S. Bjurshagen, D. Evekull, R. Koch, “Efficient generation of blue light by frequency doubling of a Nd:YAG laser operating on 4F3/2 → 4I9/2 transitions,” Appl. Phys. B 76, 135–141 (2003). [CrossRef]
  17. K. Kubodera, K. Otsuka, “Single-transverse-mode LiNdP4O12 slab waveguide laser,” J. Appl. Phys. 50, 653–659 (1979). [CrossRef]
  18. P. F. Moulton, “An investigation of the Co:MgF, laser system,” IEEE J. Quantum Electron. 21, 1582–1595 (1985). [CrossRef]
  19. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-VerlagBerlin, 1999). [CrossRef]
  20. S. Singh, R. G. Smith, L. G. Van Uitert, “Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974). [CrossRef]
  21. C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994). [CrossRef]
  22. J. Frauchiger, P. Albers, H. P. Weber, “Modeling of thermal lensing and higher order ring mode oscillation in end-pumped cw Nd:YAG lasers,” IEEE J. Quantum Electron. 28, 1046–1056 (1992). [CrossRef]
  23. S. C. Tidwell, J. F. Seamans, M. S. Bowers, A. K. Cousins, “Scaling cw diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28, 997–1009 (1992). [CrossRef]
  24. A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1068 (1992). [CrossRef]
  25. R. Wynne, J. L. Daneu, T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt. 38, 3282–3284 (1999). [CrossRef]
  26. T. Y. Fan, J. L. Daneu, “Thermal coefficients of the optical path length and refractive index in YAG,” Appl. Opt. 37, 1635–1637 (1998). [CrossRef]
  27. D. C. Brown, “Nonlinear thermal distortion in YAG rod amplifiers,” IEEE J. Quantum Electron. 34, 2383–2392 (1998). [CrossRef]
  28. A. E. Siegman, “Analysis of laser beam quality degradation caused by quartic phase aberrations,” Appl. Opt. 32, 5893–5901 (1993). [CrossRef] [PubMed]
  29. N. Hodgson, H. Weber, Optical Resonators (Springer-Verlag, Berlin, 1996).
  30. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 570–575.
  31. T. Y. Fan, “Aperture guiding in quasi-three-level lasers,” Opt. Lett. 19, 554–556 (1994). [CrossRef] [PubMed]
  32. W.A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D 34, 2381–2395 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited