OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 25 — Sep. 1, 2004
  • pp: 4802–4815

Limitation of the Achievable Signal-to-Noise Ratio in Optical Coherence Tomography Due to Mismatch of the Balanced Receiver

Carla Carmelo Rosa and Adrian Gh. Podoleanu  »View Author Affiliations


Applied Optics, Vol. 43, Issue 25, pp. 4802-4815 (2004)
http://dx.doi.org/10.1364/AO.43.004802


View Full Text Article

Acrobat PDF (218 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Owing to the limited spectral response of the fiber directional coupler used in a balanced optical coherence tomography configuration, the spectra are different in the two outputs. This affects unfavorably operation of the balanced photodetector unit. Excess photon noise makes a larger contribution than a directional coupler with a flat spectral response. A theoretical model is developed that shows that an optimum set of parameters may be defined to maximize the achievable signal-to-noise ratio. The model leads to a redefinition of the effective noise bandwidth, which takes into account the nonflat response of the directional coupler used. The model also predicts a limitation on the signal-to-noise ratio even when the stray reflectances in the interferometer are brought to zero.

© 2004 Optical Society of America

OCIS Codes
(110.1650) Imaging systems : Coherence imaging
(110.2350) Imaging systems : Fiber optics imaging
(110.4280) Imaging systems : Noise in imaging systems
(110.4500) Imaging systems : Optical coherence tomography
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(190.4160) Nonlinear optics : Multiharmonic generation

Citation
Carla Carmelo Rosa and Adrian Gh. Podoleanu, "Limitation of the Achievable Signal-to-Noise Ratio in Optical Coherence Tomography Due to Mismatch of the Balanced Receiver," Appl. Opt. 43, 4802-4815 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-25-4802


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. Takada, A. Himeno, and K. Yukimatsu, “Phase-noise and shot-noise operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483–2485 (1991).
  2. K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34, 1098–1108 (1998).
  3. P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–97 (1990).
  4. V. Sorin and D. M. Baney, “A simple intensity noise reduction technique for optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 4, 1404–1406 (1992).
  5. J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, Jr., “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
  6. E. A. Swanson, D. Huang, M. R. Lee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
  7. J. A. Izaat, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
  8. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Med. 7, 502–507 (2001).
  9. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204, 67–74 (2002).
  10. A. G. Podoleanu and D. A. Jackson, “Noise analysis of a combined optical coherence tomograph and confocal scanning ophtalmoscope,” Appl. Opt. 38, 2116–2127 (1999).
  11. A. G. Podoleanu, “Unbalanced versus balanced operation in an optical coherence tomography system,” Appl. Opt. 39, 173–182 (2000).
  12. A. G. Podoleanu, G. M. Dobre, R. G. Cucu, and R. B. Rosen, “Sequential optical coherence tomography and confocal imaging,” Opt. Lett. 29, 364–366 (2004).
  13. A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991), pp. 519–529.
  14. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1989), pp. 503–505.
  15. M. R. Hee, “Optical coherence tomography: theory,” in Handbook of Optical Coherence Tomography, B. Bouma and G. Tearney, eds. (Marcel Dekker, New York, 2001), pp. 41–66.
  16. J. A. Rogers, A. Podoleanu, G. Dobre, D. A. Jackson, and F. W. Fitzke, “Topography and volume measurements of the optic nerve using en-face optical coherence tomography,” Opt. Express 9, 533–545 (2001), http://www.opticsexpress.org.
  17. R. Ulrich and S. C. Rashleigh, “Beam-to-fiber coupling with low standing wave ratio,” Appl. Opt. 19, 2453–2456 (1980).
  18. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Opt. Express 10, 1083–1098 (2002), http://www.opticsexpress.org.
  19. M. D. Kulkarni, S. Yazdanfar, and J. A. Izatt, “Coherent signal analysis in optical coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications II, V. V. Tuchin and J. A. Izatt, eds., Proc. SPIE 3251, 22–26 (1998).
  20. C. Mujat and A. Dogariu, “Bandwidth dependence of the heterodyne efficiency in low coherence interferometry,” Opt. Express 12, 1335–1340 (2004), http://www.opticsexpress.org.
  21. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), pp. 40–44.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited