OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 25 — Sep. 1, 2004
  • pp: 4831–4837

Optical manipulation in combination with multiphoton microscopy for single-cell studies

Mattias Goksör, Jonas Enger, and Dag Hanstorp  »View Author Affiliations


Applied Optics, Vol. 43, Issue 25, pp. 4831-4837 (2004)
http://dx.doi.org/10.1364/AO.43.004831


View Full Text Article

Enhanced HTML    Acrobat PDF (1750 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate how optical tweezers can be incorporated into a multiphoton microscope to achieve three-dimensional imaging of trapped cells. The optical tweezers, formed by a cw 1064 nm Nd:YVO4 laser, were used to trap live yeast cells in suspension while the 4′,6-diamidino-2-phenylindole-stained nucleus was imaged in three dimensions by use of a pulsed femtosecond laser. The trapped cell was moved in the axial direction by changing the position of an external lens, which was used to control the divergence of the trapping laser beam. This gives us a simple method to use optical tweezers in the laser scanning of confocal and multiphoton microscopes. It is further shown that the same femtosecond laser as used for the multiphoton imaging could also be used as laser scissors, allowing us to drill holes in the membrane of trapped spermatozoa.

© 2004 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(180.0180) Microscopy : Microscopy
(180.2520) Microscopy : Fluorescence microscopy

History
Original Manuscript: December 16, 2003
Revised Manuscript: May 17, 2004
Manuscript Accepted: May 26, 2004
Published: September 1, 2004

Citation
Mattias Goksör, Jonas Enger, and Dag Hanstorp, "Optical manipulation in combination with multiphoton microscopy for single-cell studies," Appl. Opt. 43, 4831-4837 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-25-4831


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. J. Brakenhoff, P. Blom, P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Microsc. (Oxford) 117, 219–232 (1979). [CrossRef]
  2. C. J. R. Sheppard, T. Wilson, “Image formation in confocal scanning microscopes,” Optik 55, 331–342 (1980).
  3. G. J. Brakenhoff, “Imaging modes in confocal scanning light microscopy (cslm),” J. Microsc. (Oxford) 117, 233–242 (1979). [CrossRef]
  4. S. Speiser, S. Kimel, “On the possibility of observing photochemical reactions induced by multiphoton absorption,” Chem. Phys. Lett. 7, 19–22 (1970). [CrossRef]
  5. W. Denk, J. H. Strickler, W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  6. J. H. Strickler, W. Denk, W. W. Webb, “2-photon excitation in laser scanning microscopy,” Biophys. J. 57, A374 (1990).
  7. W. Denk, “Two-photon excitation in functional biological imaging,” J. Biomed. Opt. 1, 296–304 (1996). [CrossRef] [PubMed]
  8. W. Denk, “Multiphoton microscopy: imaging with nonlinear optics,” Photonics Spectra 31, 125–126 (1997).
  9. W. Denk, K. Svoboda, “Photon upmanship: why multiphoton imaging is more than a gimmick,” Neuron 18, 351–357 (1997). [CrossRef] [PubMed]
  10. M. L. Cunningham, J. S. Johnson, S. M. Giovanazzi, M. J. Peak, “Photosensitized production of superoxide anion by monochromatic (290–405 nm) ultraviolet-irradiation of nadh and nadph coenzymes,” Photochem. Photobiol. 42, 125–128 (1985). [CrossRef] [PubMed]
  11. R. M. Tyrrell, S. M. Keyse, “New trends in photobiology—the interaction of uva radiation with cultured cells,” J. Photochem. Photobiol. B 4, 349–361 (1990). [CrossRef] [PubMed]
  12. W. Denk, “Two-photon fluorescence microscopy: high resolution imaging in scattering tissue,” Eur. J. Neurosci. 10, 10602 (1998).
  13. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  14. A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769–771 (1987). [CrossRef] [PubMed]
  15. A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987). [CrossRef] [PubMed]
  16. K. König, Y. Tadir, P. Patrizio, M. W. Berns, B. J. Tromberg, “Effects of ultraviolet exposure and near infrared laser tweezers on human spermatozoa,” Hum. Reprod. 11, 2162–2164 (1996). [CrossRef] [PubMed]
  17. K. König, L. Svaasand, Y. G. Liu, G. Sonek, P. Patrizio, Y. Tadir, M. W. Berns, B. J. Tromberg, “Determination of motility forces of human spermatozoa using an 800 nm optical trap,” Cellul. Mol. Biol. 42, 501–509 (1996).
  18. M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, T. Nyström, “Sorting out bacterial viability with optical tweezers,” J. Bacteriol. 182, 5551–5555 (2000). [CrossRef] [PubMed]
  19. S. M. Block, “Optical tweezers: a new tool for biophysics,” in Noninvasive Techniques in Cell Biology, J. K. Foskett, S. Grinstein, eds. (Wiley-Liss, New York, 1990), pp. 372–402.
  20. K. Svoboda, S. M. Block, “Biological applications of optical forces,” Ann. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994). [CrossRef]
  21. K. O. Greulich, Micromanipulation by Light in Biology and Medicine (Birkhäuser, Basel, Switzerland, 1999).
  22. F. Helmchen, W. Denk, “New developments in multiphoton microscopy,” Curr. Opin. Neurobiol. 12, 593–601 (2002). [CrossRef] [PubMed]
  23. K. Visscher, G. J. Brakenhoff, “Single beam optical trapping integrated in a confocal microscope for biological applications,” Cytometry 12, 486–491 (1991). [CrossRef] [PubMed]
  24. K. Visscher, G. J. Brakenhoff, J. J. Krol, “Micromanipulation by multiple optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14, 105–114 (1993). [CrossRef]
  25. A. Hoffmann, G. M. Z. Horste, G. Pilarczyk, S. Monajembashi, V. Uhl, K. O. Greulich, “Optical tweezers for confocal microscopy,” Appl. Phys. B 71, 747–753 (2000). [CrossRef]
  26. D. L. Wokosin, J. M. Squirrell, K. W. Eliceiri, J. G. White, “Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities,” Rev. Sci. Instrum. 74, 193–201 (2003). [CrossRef]
  27. M. W. Berns, Y. Tadir, H. Liang, B. J. Tromberg, “Laser scissors and tweezers,” in Laser Tweezers in Cell Biology, M. P. Sheetz, ed. (Academic, San Diego, Calif., 1998), pp. 71–98.
  28. M. Goksör, A. Diez, J. Enger, D. Hanstorp, T. Nyström, “Analysis of molecular diffusion in ftsK cell division mutants using laser surgery,” EMBO Rep. 4, 867–871 (2003). [CrossRef] [PubMed]
  29. U. K. Tirlapur, K. König, “Femtosecond near-infrared laser pulses as a versatile non-invasive tool for intra-tissue nanoprocessing in plants without compromising viability,” Plant J. 31, 365–374 (2002). [CrossRef] [PubMed]
  30. E. Fällman, O. Axner, “Design for fully steerable dual-trap optical tweezers,” Appl. Opt. 36, 2107–2113 (1997). [CrossRef] [PubMed]
  31. M. Goksör, J. Enger, K. Ramser, D. Hanstorp, “An experimental setup for combining optical tweezers and laser scalpels with advanced imaging techniques,” in Microarrays and Combinatorial Technologies for Biomedical Applications: Design, Fabrication and Analysis, D. V. Nicolau, R. Raghavachari, eds., Proc. SPIE4966, 50–57 (2003). [CrossRef]
  32. R. P. Haugland, Handbook of Fluorescent Probes and Research Products (Molecular Probes, Leiden, The Netherlands, 2002).
  33. F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc. (Oxford) 208, 108–115 (2002). [CrossRef]
  34. U. K. Tirlapur, K. König, “Near-infrared femtosecond laser pulses as a novel non-invasive means for dye-permeation and 3D imaging of localised dye-coupling in the arabidopsis root meristem,” Plant J. 20, 363–370 (1999). [CrossRef] [PubMed]
  35. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. (Oxford) 200, 83–104 (2000). [CrossRef]
  36. K. König, H. Liang, M. W. Berns, B. J. Tromberg, “Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21, 1090–1092 (1996). [CrossRef] [PubMed]
  37. K. König, “Laser tweezers are sources of two-photon excitation,” Cellul. Mol. Biol. 44, 721–733 (1998).
  38. Z. X. Zhang, G. J. Sonek, H. Liang, M. W. Berns, B. J. Tromberg, “Multiphoton fluorescence excitation in continuous-wave infrared optical traps,” Appl. Opt. 37, 2766–2773 (1998). [CrossRef]
  39. S. W. Hell, M. Booth, S. Wilms, C. M. Schnetter, A. K. Kirsch, D. J. Arndt-Jovin, T. M. Jovin, “Two-photon near- and far-field fluorescence microscopy with continuous-wave excitation,” Opt. Lett. 23, 1238–1240 (1998). [CrossRef]
  40. Y. Liu, G. J. Sonek, M. W. Berns, K. König, B. J. Tromberg, “2-photon fluorescence excitation in continuous-wave infrared optical tweezers,” Opt. Lett. 20, 2246–2248 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited