OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 25 — Sep. 1, 2004
  • pp: 4838–4844

Simple lens axicon

Anna Burvall, Katarzyna Kołacz, Zbigniew Jaroszewicz, and Ari T. Friberg  »View Author Affiliations


Applied Optics, Vol. 43, Issue 25, pp. 4838-4844 (2004)
http://dx.doi.org/10.1364/AO.43.004838


View Full Text Article

Enhanced HTML    Acrobat PDF (532 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design of a cemented doublet-lens axicon made from spherical surfaces only. Compared with diffractive axicons, refractive cone axicons, and earlier lens axicons with aspheric surfaces, this element is inexpensive and easy to manufacture even with large apertures. The lens axicon is based on the deliberate use of the spherical aberration of the surfaces. The design principles of the element and its characterization, numerically and experimentally, are presented in detail. Although performance was traded for simplicity and robustness, the results show that the lens axicon has the main axicon properties: a narrow, extended line focus of relatively constant width.

© 2004 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(080.3620) Geometric optics : Lens system design
(220.2740) Optical design and fabrication : Geometric optical design
(220.3620) Optical design and fabrication : Lens system design

History
Original Manuscript: December 17, 2003
Revised Manuscript: May 17, 2004
Manuscript Accepted: May 26, 2004
Published: September 1, 2004

Citation
Anna Burvall, Katarzyna Kołacz, Zbigniew Jaroszewicz, and Ari T. Friberg, "Simple lens axicon," Appl. Opt. 43, 4838-4844 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-25-4838


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954). [CrossRef]
  2. L. M. Soroko, Meso-Optics—Foundations and Applications (World Scientific, Singapore, 1996), Chap. 2 and references therein.
  3. Z. Jaroszewicz, Axicons: Design and Propagation Properties, Research and Development Treatises, Vol. 5 (SPIE Polish Chapter, Warsaw, 1997) and references therein.
  4. J. Sochacki, A. Kolodziejczyk, Z. Jaroszewicz, S. Bara, “Nonparaxial design of generalized axicons,” Appl. Opt. 31, 5326–5330 (1992). [CrossRef] [PubMed]
  5. J. A. Davis, E. Carcole, D. M. Cottrell, “Range-finding by triangulation with nondiffracting beams,” Appl. Opt. 35, 2159–2161 (1996). [CrossRef] [PubMed]
  6. G. Bickel, G. Haüsler, M. Haul, “Triangulation with extended range of depth,” Opt. Eng. 24, 975–977 (1985). [CrossRef]
  7. G. Haüsler, W. Heckel, “Light sectioning with large depth and high resolution,” Appl. Opt. 27, 5165–5169 (1988). [CrossRef] [PubMed]
  8. R. Arimoto, C. Saloma, T. Tanaka, S. Kawata, “Imaging properties of axicon in scanning optical system,” Appl. Opt. 31, 6653–6657 (1992). [CrossRef] [PubMed]
  9. R. Tremblay, Y. D’Astous, G. Roy, M. Blanchard, “Laser plasmas optically pumped by focusing with an axicon,” Opt. Commun. 28, 193–196 (1979). [CrossRef]
  10. K. Shinozaki, C. Xu, H. Sasaki, T. Kamijoh, “A comparison of optical second-harmonic generation efficiency using Bessel and Gaussian beams in bulk crystals,” Opt. Commun. 133, 300–304 (1997). [CrossRef]
  11. V. E. Peet, R. V. Tusbin, “Third-harmonic generation and multiphoton ionization in Bessel beams,” Phys. Rev. A 56, 1613–1620 (1997). [CrossRef]
  12. Y. Song, D. Milan, W. T. Hill, “Long, narrow all-light atom guide,” Opt. Lett. 24, 1805–1807 (1999). [CrossRef]
  13. J. Arlt, T. Hitomi, K. Dholakia, “Atom guiding along Laguerre–Gaussian and Bessel light beams,” Appl. Phys. B 71, 549–554 (2000). [CrossRef]
  14. Q.-S. Ru, N. Ohyama, T. Honda, “Fringe scanning radial shearing interferometer with circular gratings,” Opt. Commun. 69, 189–192 (1989). [CrossRef]
  15. R. Schreiner, M. Beyerlein, I. Harder, T. Dresel, N. Lindlein, J. Schwider, “Form assessment of hollow cylindrical specimens,” Appl. Opt. 41, 64–69 (2002). [CrossRef] [PubMed]
  16. A. Vasara, J. Turunen, A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989). [CrossRef] [PubMed]
  17. J. Arlt, K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000). [CrossRef]
  18. R. M. Herman, T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8, 932–942 (1991). [CrossRef]
  19. W. H. Steel, “Axicons with spherical surfaces,” in Colloquia of the International Commission for Optics: Optics in Metrology, P. Mollet, ed. (Pergamon, Oxford, 1960), pp. 181–192.
  20. Z. Jaroszewicz, J. Morales, “Lens axicons: systems composed of a diverging aberrated lens and a perfect converging lens,” J. Opt. Soc. Am. A 15, 2383–2390 (1998). [CrossRef]
  21. Z. Jaroszewicz, J. Morales, “Lens axicons: systems composed of a diverging aberrated lens and a converging aberrated lens,” J. Opt. Soc. Am. A 16, 191–197 (1999). [CrossRef]
  22. J. Pu, H. Zhang, S. Nemoto, “Lens axicons illuminated by Gaussian beams for generation of uniform-axial intensity bessel fields,” Opt. Eng. 39, 803–807 (2000). [CrossRef]
  23. M. Arif, M. M. Hossain, A. A. S. Awwal, M. N. Islam, “Refracting system for annular Gaussian-to-Bessel beam transformation,” Appl. Opt. 37, 649–652 (1998). [CrossRef]
  24. M. Arif, M. M. Hossain, A. A. S. Awwal, M. N. Islam, “Two-element refracting system for annular Gaussian-to-Bessel beam transformation,” Appl. Opt. 37, 4206–4209 (1998). [CrossRef]
  25. K. M. Iftekharuddin, A. A. S. Awwal, M. A. Karim, “Gaussian-to-Bessel beam transformation using a split refracting system,” Appl. Opt. 32, 2252–2256 (1993). [CrossRef]
  26. W. Chi, N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett. 26, 875–877 (2001). [CrossRef]
  27. R. M. Herman, T. A. Wiggins, “High-efficiency diffractionless beams of constant size and intensity,” Appl. Opt. 33, 7297–7306 (1994). [CrossRef] [PubMed]
  28. T. Aruga, “Generation of long-range nondiffracting narrow light beams,” Appl. Opt. 36, 3762–3768 (1997). [CrossRef] [PubMed]
  29. T. Aruga, S. W. Li, “Super high resolution for long-range imaging,” Appl. Opt. 38, 2795–2799 (1999). [CrossRef]
  30. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, Z. Chen, “High resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243–245 (2002). [CrossRef]
  31. We use the term doublet-lens axicon for a doublet lens with axicon properties. A similar term is the lens–axicon doublet, which refers to an axicon combined with a lens; see, e.g.,C. Parigger, Y. Tang, D. H. Plemmons, J. W. L. Lewis, “Spherical aberration effects in lens–axicon doublets: theoretical study,” Appl. Opt. 36, 8214–8221 (1997).
  32. We refer to positive spherical aberration when the wave-front aberration is positive, i.e., when the transverse and longitudinal aberrations are negative, and vice versa for negative spherical aberration; see, e.g., W. T. Welford, Aberrations of the Symmetrical Optical System (Academic, London, 1974).
  33. A. G. Sedukhin, “Beam-preshaping axicon focusing,” J. Opt. Soc. Am. A 15, 3057–3066 (1998). [CrossRef]
  34. J. Sochacki, Z. Jaroszewicz, L. R. Staronski, A. Kolodziejczyk, “Annular-aperture logarithmic axicon,” J. Opt. Soc. Am. A 10, 1765–1768 (1993). [CrossRef]
  35. G. E. Sommargren, H. J. Weaver, “Diffraction of light by an opaque sphere. 1: Description and properties of the diffraction pattern,” Appl. Opt. 29, 4646–4657 (1990). [CrossRef] [PubMed]
  36. A. G. Sedukhin, “Marginal phase correction of truncated Bessel beams,” J. Opt. Soc. Am. A 17, 1059–1066 (2000). [CrossRef]
  37. A. Thaning, Z. Jaroszewicz, A. T. Friberg, “Diffractive axicons in oblique illumination: analysis and experiments and comparison with elliptical axicons,” Appl. Opt. 42, 9–17 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited