OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 25 — Sep. 1, 2004
  • pp: 4862–4873

Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids

Ping Yu, Mirela Mustata, Leilei Peng, John J. Turek, Michael R. Melloch, Paul M. W. French, and David D. Nolte  »View Author Affiliations


Applied Optics, Vol. 43, Issue 25, pp. 4862-4873 (2004)
http://dx.doi.org/10.1364/AO.43.004862


View Full Text Article

Enhanced HTML    Acrobat PDF (461 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Holographic optical coherence imaging is a full-frame variant of coherence-domain imaging. An optoelectronic semiconductor holographic film functions as a coherence filter placed before a conventional digital video camera that passes coherent (structure-bearing) light to the camera during holographic readout while preferentially rejecting scattered light. The data are acquired as a succession of en face images at increasing depth inside the sample in a fly-through acquisition. The samples of living tissue were rat osteogenic sarcoma multicellular tumor spheroids that were grown from a single osteoblast cell line in a bioreactor. Tumor spheroids are nearly spherical and have radial symmetry, presenting a simple geometry for analysis. The tumors investigated ranged in diameter from several hundred micrometers to over 1 mm. Holographic features from the tumors were observed in reflection to depths of 500–600 μm with a total tissue path length of approximately 14 mean free paths. The volumetric data from the tumor spheroids reveal heterogeneous structure, presumably caused by necrosis and microcalcifications characteristic of some human avascular tumors.

© 2004 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(110.4500) Imaging systems : Optical coherence tomography
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(190.5330) Nonlinear optics : Photorefractive optics
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW

History
Original Manuscript: December 15, 2003
Manuscript Accepted: March 12, 2004
Published: September 1, 2004

Citation
Ping Yu, Mirela Mustata, Leilei Peng, John J. Turek, Michael R. Melloch, Paul M. W. French, and David D. Nolte, "Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids," Appl. Opt. 43, 4862-4873 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-25-4862


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafto, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995). [CrossRef] [PubMed]
  3. J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointenstinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996). [CrossRef]
  4. J. A. Izatt, M. D. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, A. J. Welch, “Optical coherence tomography for biodiagnostics,” Opt. Photon. News 8, 41–47 (1997). [CrossRef]
  5. J. M. Schmitt, S. H. Xiang, “Cross-polarized backscatter in optical coherence tomography of biological tissue,” Opt. Lett. 23, 1060–1062 (1998). [CrossRef]
  6. A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Top. Quantum Electron. 5, 1176–1184 (1999). [CrossRef]
  7. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001). [CrossRef] [PubMed]
  8. M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992). [CrossRef]
  9. M. Laubscher, M. Ducros, B. Karamata, T. Lasser, R. Salathe, “Video-rate three-dimensional optical coherence tomography,” Opt. Exp. 10, 429–435 (2002), http://www.opticsexpress.org . [CrossRef]
  10. S. Bourquin, P. Seitz, R. P. Salathe, “Optical coherence topography based on a two-dimensional smart detector array,” Opt. Lett. 26, 512–514 (2001). [CrossRef]
  11. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998). [CrossRef]
  12. E. N. Leith, J. Upatnieks, “Holograms: their properties and uses,” in Geometric Optics I, H. R. Stoppach, ed., Proc. SPIE4, 3–6 (1965).
  13. H. Kogelnik, “Holographic image projection through inhomogeneous media,” Bell Syst. Tech. J. 44, 2451–2455 (1965). [CrossRef]
  14. K. A. Stetson, “Holographic fog penetration,” J. Opt. Soc. Am. 57, 1060–1061 (1967). [CrossRef]
  15. A. W. Lohmann, C. A. Schmalfuss, “Holography through fog: a new version,” Opt. Commun. 26, 318–321 (1978). [CrossRef]
  16. M. A. Duguay, A. T. Mattick, “Ultra-high-speed photography of picosecond light pulses and echoes,” Appl. Opt. 10, 2162–2170 (1971). [CrossRef] [PubMed]
  17. N. H. Abramson, K. G. Spears, “Single pulse light-in-flight recording by holography,” Appl. Opt. 28, 1834–1841 (1989). [CrossRef] [PubMed]
  18. K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1214 (1989). [CrossRef] [PubMed]
  19. R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Direct-to-video holographic readout in quantum wells for three-dimensional imaging through turbid media,” Opt. Lett. 23, 103–105 (1998). [CrossRef]
  20. Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, M. R. Melloch, “High-frame-rate, 3-D photorefractive holography through turbid media with arbitrary sources and photorefractive structured illumination,” IEEE J Sel. Top. Quantum Electron. 7, 878–886 (2001). [CrossRef]
  21. S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Depth-resolved holography through turbid media using photorefraction,” IEEE J. Sel. Top. Quantum Electron. 2, 965–975 (1996). [CrossRef]
  22. R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996). [CrossRef]
  23. D. D. Nolte, D. H. Olson, G. E. Doran, W. H. Knox, A. M. Glass, “Resonant photodiffractive effect in semi-insulating multiple quantum wells,” J. Opt. Soc. Am. B 7, 2217–2225 (1990). [CrossRef]
  24. D. D. Nolte, “Semi-insulating semiconductor heterostructures: optoelectronic properties and applications,” J. Appl. Phys. 85, 6259 (1999). [CrossRef]
  25. D. D. Nolte, T. Cubel, L. J. Pyrak-Nolte, M. R. Melloch, “Adaptive beam combining and interferometry with photorefractive quantum wells,” J. Opt. Soc. Am. B. 18, 195–205 (2001). [CrossRef]
  26. I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998). [CrossRef]
  27. Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718–720 (1997). [CrossRef] [PubMed]
  28. Y. Ding, D. D. Nolte, M. R. Melloch, A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998). [CrossRef]
  29. Y. Ding, A. M. Weiner, M. R. Melloch, D. D. Nolte, “Adaptive all-order dispersion compensation of ultrafast laser pulses using dynamic spectral holography,” Appl. Phys. Lett. 75, 3255–3257 (1999). [CrossRef]
  30. R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Exp. 2, 439–448 (1998), http://www.opticsexpress.org . [CrossRef]
  31. R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998). [CrossRef]
  32. Z. Ansari, Y. Gu, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, M. R. Melloch, “Elimination of beam walk-off in low-coherence off-axis photorefractive holography,” Opt. Lett. 26, 334–336 (2001). [CrossRef]
  33. P. Yu, M. Mustata, W. Headley, D. D. Nolte, J. J. Turek, P. M. W. French, “Optical coherence imaging of rat tumor spheroids,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI, V. V. Tuchin, J. A. Izatt, J. G. Fujomoto, eds., Proc. SPIE4619, 210–218 (2002). [CrossRef]
  34. P. Yu, M. Mustata, P. M. W. French, J. J. Turek, M. R. Melloch, D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83, 575–577 (2003). [CrossRef]
  35. P. Yu, L. Peng, M. Mustata, J. J. Turek, M. R. Melloch, D. D. Nolte, “Time-dependent speckle in holographic optical coherence imaging and the health of tumor tissue,” Opt. Lett. 29, 68–70 (2004). [CrossRef] [PubMed]
  36. L. Vabre, A. Dubois, A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002). [CrossRef]
  37. L. de Ridder, “Autologous confrontation of brain tumor-derived spheroids with human dermal spheroids,” Anticancer Res. 17, 4119–4120 (1997).
  38. K. Groebe, W. Mueller-Klieser, “On the relation between size of necrosis and diameter of tumor spheroids,” Int. J. Radiat. Oncol. Biol. Phys. 34, 395–401 (1996). [CrossRef] [PubMed]
  39. R. Hamamoto, K. Yamada, M. Kamihira, S. Iijima, “Differentiation and proliferation of primary rat hepatocytes cultured as spheroids,” J. Biochem. (Tokyo) 124, 972–979 (1998). [CrossRef]
  40. G. Hamilton, “Multicellular spheroids as an in vitro tumor model,” Cancer Lett. 131, 29–34 (1998). [CrossRef] [PubMed]
  41. P. Hargrave, P. W. Nicholson, D. T. Delpy, M. Firbank, “Optical properties of multicellular tumour spheroids,” Phys. Med. Biol. 41, 1067–1072 (1996). [CrossRef] [PubMed]
  42. L. A. Kunz-Schughart, M. Kreutz, R. Knuechel, “Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology,” Int. J. Exp. Pathol. 79, 1–23 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited