OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 25 — Sep. 1, 2004
  • pp: 4915–4921

Frequency-shifted optical feedback in a pumping laser diode dynamically amplified by a microchip laser

Eric Lacot and Olivier Hugon  »View Author Affiliations

Applied Optics, Vol. 43, Issue 25, pp. 4915-4921 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (620 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Compared with conventional optical heterodyne detection, laser optical feedback imaging (LOFI) allows for a several orders of magnitude higher intensity modulation contrast. The maximum contrast amplification is typically 103 for a diode laser in the gigahertz range and 106 for a microchip laser in the megahertz range. To take advantage of the wavelength tunability of a laser diode and of the lower resonant detection frequency of a microchip laser, we used LOFI modulation induced by the frequency-shifted optical feedback in a laser diode as a modulated pumping power for a microchip laser for resonant dynamic amplification. In this way, we were able to transfer the optical feedback sensitivity of the laser diode to the megahertz range. Application to telemetry is also reported.

© 2004 Optical Society of America

OCIS Codes
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(180.3170) Microscopy : Interference microscopy

Original Manuscript: September 19, 2003
Revised Manuscript: April 16, 2004
Manuscript Accepted: May 17, 2004
Published: September 1, 2004

Eric Lacot and Olivier Hugon, "Frequency-shifted optical feedback in a pumping laser diode dynamically amplified by a microchip laser," Appl. Opt. 43, 4915-4921 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980). [CrossRef]
  2. J. Mork, B. Tromborg, J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992). [CrossRef]
  3. B. Haegeman, K. Engelborghs, D. Roose, D. Pieroux, T. Erneux, “Stability and rupture of bifurcation bridges in semiconductor lasers subject to optical feedback,” Phys. Rev. E 66, 046216 (2002). [CrossRef]
  4. R. Gabet, G. M. Stéphan, M. Bondiou, P. Besnard, D. Kilper, “Ultraghigh sensitivity detector for coherent light: the laser,” Opt. Commun. 185, 109–114 (2000). [CrossRef]
  5. P. Besnard, B. Meziane, G. M. Stephan, “Feedback phenomena in a semiconductor laser induced by distant reflectors,” IEEE J. Quantum Electron. 29, 1271–1284 (1993). [CrossRef]
  6. A. Bearden, M. P. O’Neill, L. C. Osborne, T. L. Wong, “Imaging and vibrational analysis with laser-feedback interferometry,” Opt. Lett. 18, 238–240 (1993). [CrossRef] [PubMed]
  7. T. Bosch, N. Servagent, S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001). [CrossRef]
  8. L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, A. Le Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41, 5702–5712 (2002). [CrossRef] [PubMed]
  9. T. Dresel, G. Häusler, H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992). [CrossRef] [PubMed]
  10. E. Lacot, R. Day, J. Pinel, F. Stoeckel, “Laser relaxation-oscillation frequency imaging,” Opt. Lett. 26, 1483–1485 (2001). [CrossRef]
  11. E. Lacot, R. Day, F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744–746 (1999). [CrossRef]
  12. K. Otsuka, “Highly sensitive measurement of Doppler-shift with a microchip solid-state laser,” Jpn. J. Appl. Phys. 31, L1546–L1548 (1992). [CrossRef]
  13. S. Okamoto, H. Takeda, F. Kannari, “Ultrahighly sensitive laser-Doppler velocity meter with a diode-pumped Nd:YVO4 microchip laser,” Rev. Sci. Instrum. 66, 3116–3120 (1995). [CrossRef]
  14. E. Lacot, R. Day, F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A 64, 043815 (2001). [CrossRef]
  15. E. Lacot, O. Hugon, F. Stoeckel, “Hopf amplification of frequency-shifted optical feedback,” Phys. Rev. A 67, 053806 (2003). [CrossRef]
  16. T.-S. Lim, T.-H. Yang, J.-L. Chern, K. Otsuka, “Phase-noise-driven instability in a single-mode microchip Nd:YVO4 laser with feedback,” IEEE J. Quantum Electron. 37, 1215–1225 (2001). [CrossRef]
  17. Y. I. Khanin, Principle of Laser Dynamics (Elsevier, Amsterdam, 1995), pp. 57–62.
  18. Equations (5) show that the direct LOFI modulation is at the first order [O( Re)], independent of the phase amplitude coupling parameters α.
  19. N. Servagent, G. Mourat, F. Gouaux, T. Bosch, “Analysis of some intrinsic limitations of a laser range-finder using the self-mixing interference,” in Laser Interferometry IX: Applications, R. J. Pryputniewicz, G. M. Brown, W. P. Jueptner, eds., Proc. SPIE3479, 76–83 (1998). [CrossRef]
  20. J. J. Zayhowski, A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14, 24–26 (1989). [CrossRef] [PubMed]
  21. M. Rabarot, J. Marty, L. Fulbert, Ph. Thony, E. Molva, “Very low threshold microchip lasers with stable microcavities,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 483–484.
  22. D. Derozier, S. Bielawski, P. Glorieux, “Dynamical behavior of a doped fiber laser under pump modulation,” Opt. Commun. 83, 97–102 (1991). [CrossRef]
  23. A more detailed analysis of the experimental results (not developed in this paper) shows, for particular experimental conditions, an increase of the signal-to-noise ratio of the indirect LOFI modulation compared with the direct LOFI modulation. This study is currently in progress and is still unresolved.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited