OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 25 — Sep. 1, 2004
  • pp: 4929–4940

Use of Equivalent Spheres to Model the Relation Between Radar Reflectivity and Optical Extinction of Ice Cloud Particles

David Patrick Donovan, Markus Quante, Ingo Schlimme, and Andreas Macke  »View Author Affiliations


Applied Optics, Vol. 43, Issue 25, pp. 4929-4940 (2004)
http://dx.doi.org/10.1364/AO.43.004929


View Full Text Article

Acrobat PDF (874 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of ice crystal size and shape on the relation between radar reflectivity and optical extinction is examined. Discrete-dipole approximation calculations of 95-GHz radar reflectivity and ray-tracing calculations are applied to ice crystals of various habits and sizes. Ray tracing was used primarily to calculate optical extinction and to provide approximate information on the lidar backscatter cross section. The results of the combined calculations are compared with Mie calculations applied to collections of different types of equivalent spheres. Various equivalent sphere formulations are considered, including equivalent radar-lidar spheres; equivalent maximum dimension spheres; equivalent area spheres, and equivalent volume and equivalent effective radius spheres. Marked differences are found with respect to the accuracy of different formulations, and certain types of equivalent spheres can be used for useful prediction of both the radar reflectivity at 95 GHz and the optical extinction (but not lidar backscatter cross section) over a wide range of particle sizes. The implications of these results on combined lidar-radar ice cloud remote sensing are discussed.

© 2004 Optical Society of America

OCIS Codes
(000.0000) General : General
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.3640) Atmospheric and oceanic optics : Lidar
(280.3640) Remote sensing and sensors : Lidar
(280.5600) Remote sensing and sensors : Radar
(290.1090) Scattering : Aerosol and cloud effects

Citation
David Patrick Donovan, Markus Quante, Ingo Schlimme, and Andreas Macke, "Use of Equivalent Spheres to Model the Relation Between Radar Reflectivity and Optical Extinction of Ice Cloud Particles," Appl. Opt. 43, 4929-4940 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-25-4929


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P.-H. Wang, P. Minnis, M. P. McCormick, G. S. Kent, and K. M. Skeens, “A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990),” J. Geophys. Res. 101, 29407– 20429 (1996).
  2. D. P. Wylie and W. P. Menzel, “Eight years of high cloud statistics using HIRS,” J. Clim. 12, 170–184 (1999).
  3. A. Arking, “The radiative effects of clouds and their impact on climate,” Bull. Am. Meteorol Soc. 72, 795–813 (1991).
  4. D. Atlas, S. Y. Matrosov, A. J. Heymsfield, M.-D. Chou, and D. B. Wolff, “Radar and radiation properties of ice clouds,” J. Appl. Meteorol. 34, 2329–2345 (1995).
  5. D. P. Donovan and A. C. A. P. Van Lammeren, “Cloud effective particle size and water content profile retrievals using combined lidar and radar observations, 1, theory and examples,” J. Geophys. Res. 106, 27425–27448 (2001).
  6. D. P. Donovan, A. C. A. P. Van Lammeren, R. J. Hogan, H. W. J. Russchenberg, A. Apituley, P. Francis, J. Testud, J. Pelon, M. Quante, and J. Goddard, “Cloud effective particle size and water content profile retrievals using combined lidar and radar observations, 2, comparison with IR radiometer and in situ measurements of ice clouds,” J. Geophys. Res. 106, 27449–27464 (2001).
  7. S. Y. Matrosov, B. W. Orr, R. A. Kropfli, and J. B. Snider, “Retrieval of vertical profiles of cirrus cloud microphysical parameters from Doppler radar and infrared radiometer measurements,” J. Appl. Meteorol. 33, 617–626 (1994).
  8. G. L. Stephens, D. G. Vane, R. Boain, G. Mace, K. Sassen, Z. Wang, A. Illingworth, E. O’Connor, W. Rossow, S. L. Durden, S. Miller, R. Austin, A. Benedetti, C. Mitrescu, and the CloudSat Science Team, “The CloudSat Mission and the EOS Constellation: a new dimension of space-based observations of clouds and precipitation,” Bull. Am. Meteor. Soc. 83, 1771–1790 (2002).
  9. ESA (European Space Agency), The Five Candidate Earth Explorer Missions—EarthCare—Earth Clouds, Aerosols and Radiation Explorer ESA SP-1257(1), (ESA/ESTEC, Noordwijk, The Netherlands, 2001).
  10. A. Macke, M. I. Michshenko, K. Miunonen, and B. E. Carlson, “Scattering of light by large nonspherical particles: ray tracing approximation versus T-matrix method,” Opt. Lett. 20, 1934–1936 (1995).
  11. B. T. Draine, and P. J. Flatau, “The discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. 11, 1491–1499 (1994).
  12. P. N. Francis, P. Hignett, and A. Macke, “The retrieval of cirrus cloud properties from aircraft multispectral reflectance measurements during EURCREX’93,” Q. J. R. Meteorol. Soc. 124, 1273–1291 (1998).
  13. T. C. Grenfell and S. G. Warren, “Representation of a nonspherical ice particle by an assembly of spheres,” J. Geophys. Res. 104, 31697–31709 (1999).
  14. S. P. Neshyba, T. C. Grenfell, and S. G. Warren, “Representation of a nonspherical ice particle by an assembly of spheres: 2. Hexagonal columns and plates,” J. Geophys. Res. 108, 4448, doi: 10.1029/2002JD003302 (2003).
  15. H. Lemke and M. Quante, “Backscatter characteristics of nonspherical ice crystals: assessing the potential of polarimetric radar measurements,” J. Geophys. Res. 104, 31739–31752 (1999).
  16. H. V. Van De Hulst, Light Scattering by Small Particles (Dover, New York, 1981), pp. 85–101.
  17. Y. Tanaka and K. N. Liou, “Radiative transfer in cirrus clouds. III. Light scattering by irregular ice crystals,” J. Atmos. Sci. 52, 818–837 (1995).
  18. D. P. Donovan, “Ice-cloud effective particle size parameterization based on combined lidar, radar and mean Doppler velocity measurements,” J. Geophys. Res. 108, 4573, doi: 10.1029/2003JD003469 (2003).
  19. Y. X. Hu and K. Stamnes, “An accurate parameterization of the radiative properties of water clouds suitable for use in climate models,” J. Clim. 6, 728–742 (1993).
  20. D. Atlas, M. Kerker, and W. Hitschfeld, “Scattering and attenuation by non-spherical atmospheric particles,” J. Atmos. Terr. Phys. 3, 108–119 (1954).
  21. J. Hallett, W. P. Arnott, M. P. Bailey, and J. T. Hallet, “Ice crystals in cirrus,” in Cirrus, D. K. Lynch, K. Sassen, D. Starr, and G. Stephens, eds. (Oxford U. Press, New York, 2002), pp. 41–77.
  22. A. J. Heymsfield and G. M. McFarquhar, “Midlatitude and tropical, cirrus microphysical properties,” in Cirrus, D. K. Lynch, K. Sassen, D. Starr, and G. Stephens, eds. (Oxford U. Press, New York, 2002), pp. 78–101.
  23. A. H. Auer and D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27, 919–926 (1970).
  24. H. Lemke, H. Okamoto, and M. Quante, “Comment on Error analysis of backscatter from discrete dipole approximation for different ice particle shapes,” Atmos. Res. 49, 189–197 (1998).
  25. C. E. Dungey and C. F. Bohren, “Backscattering by nonspherical hydrometeors as calculated by the coupled-dipole method; an application in radar meteorology,” J. Atmos. Ocean. Technol. 10, 526–532 (1993).
  26. T. L. Schneider and G. L. Stephens, “Theoretical aspects of modeling backscattering by cirrus ice particles at millimeter wavelength,” J. Atmos. Sci. 52, 4367– 4385 (1995).
  27. K. Aydin and C. Tang, “Millimeter wave radar scattering from model ice crystal distributions,” IEEE Trans. Geosci. Remote Sens. 35, 140–146 (1997).
  28. H. Okamoto, A. Macke, M. Quante, and E. Raschke, “Modeling of backscattering by non-spherical ice particles for the interpretation of cloud radar signals at 94 GHz. An error analysis,” Contrib. Atmos. Phys. 68, 319–334 (1995).
  29. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  30. P. Yang and K. N. Liou, “Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics models,” J. Opt. Soc. Am. 12, 162–176 (1995).
  31. S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984).
  32. M. I. Mishchenko and A. Macke, “How big should hexagonal ice crystals be to produce haloes?” Appl. Opt. 38, 1626–1629 (1999).
  33. A. Macke, J. Müller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).
  34. M. Mishchenko and A. Macke, “Incorporation of physical optics effects and computation of the Legendre expansion for ray-tracing phase functions involving delta-function transmission,” J. Geophys. Res. 103, 1799–1805 (1998).
  35. A. J. Gibson, L. Thomas, and S. K. Bhattacharyya, “Some characteristics of cirrus clouds deduced from laser radar observations at different elevation angles,” J. Atmos. Terr. Phys. 29, 657–660 (1997).
  36. L. Thomas, J. C. Cartwright, and D. P. Wakeling, “Lidar observations of the horizontal orientation of ice crystals in cirrus clouds,” Tellus 42B, 211–216 (1990).
  37. C. M. R. Platt, N. Abshire, and G. McNice, “Some microphysical properties of an ice cloud from lidar observation of horizontally aligned crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).
  38. A. Ansmann, “Molecular-backscatter profiling of the volume-scattering coefficient in cirrus,” in Cirrus, D. K. Lynch, K. Sassen, D. Starr, and G. Stephens, eds. (Oxford U. Press, New York, 2002), pp. 197–210.
  39. P. Piironen and E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited