OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 25 — Sep. 1, 2004
  • pp: 4941–4956

Performance capabilities of middle-atmosphere temperature lidars: comparison of Na, Fe, K, Ca, Ca+, and Rayleigh systems

Chester S. Gardner  »View Author Affiliations

Applied Optics, Vol. 43, Issue 25, pp. 4941-4956 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The measurement accuracies of modern resonance fluorescence and Rayleigh temperature lidars are limited primarily by photon noise. The narrowband three-frequency fluorescence technique is shown to perform within a few decibels of the theoretical optimum at night for both temperature and wind observations. These systems also exhibit good performance during the day because the fluorescence wavelengths of Na, Fe, K, Ca, and Ca+ all correspond to strong solar Fraunhofer lines, where sky brightness is attenuated by a factor of 5 or more. Whereas Na systems achieve the highest signal-to-noise ratios for mesopause region observations (80–105 km), the three-frequency Fe system is attractive because it performs well as both a fluorescence and a Rayleigh lidar throughout the middle atmosphere at approximately 25–110 km.

© 2004 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.6780) Instrumentation, measurement, and metrology : Temperature
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.3640) Remote sensing and sensors : Lidar
(290.5870) Scattering : Scattering, Rayleigh

Original Manuscript: February 12, 2004
Revised Manuscript: May 4, 2004
Manuscript Accepted: May 21, 2004
Published: September 1, 2004

Chester S. Gardner, "Performance capabilities of middle-atmosphere temperature lidars: comparison of Na, Fe, K, Ca, Ca+, and Rayleigh systems," Appl. Opt. 43, 4941-4956 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. B. Elterman, “The measurement of the stratospheric density distribution with the search light technique,” J. Geophys. Res. 56, 509–520 (1951). [CrossRef]
  2. L. B. Elterman, “A series of stratospheric temperature profiles obtained with the searchlight technique,” J. Geophys. Res. 58, 519–530 (1953). [CrossRef]
  3. L. B. Elterman, “Seasonal trends of temperature, density, and pressure to 67.6 km obtained with the searchlight probing technique,” J. Geophys. Res. 59, 351–358 (1951). [CrossRef]
  4. D. Bruneau, A. Garnier, A. Hertzog, J. Porteneuve, “Wind-velocity lidar measurements by use of a Mach–Zehnder interferometer, comparison with a Fabry–Perot interferometer,” Appl. Opt. 43, 173–182 (2004). [CrossRef] [PubMed]
  5. A. Hauchecorne, M. L. Chanin, P. Keckhut, “Climatology and trends of middle atmospheric temperatures (33–87 km) as seen by Rayleigh lidar over the south of France,” J. Geophys. Res. 96, 15297–15309 (1991). [CrossRef]
  6. M. R. Bowman, A. J. Gibson, M. C. W. Sandford, “Atmospheric sodium measured by a tuned laser radar,” Nature 221, 456–457 (1969). [CrossRef]
  7. Y. Zhao, A. Liu, C. S. Gardner, “Measurements of atmospheric stability in the mesopause region at Starfire Optical Range, NM,” J. Atmos. Solar Terr. Phys. 65, 219–232 (2003). [CrossRef]
  8. R. E. Bills, C. S. Gardner, C. Y. She, “Narrowband lidar technique for Na temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991). [CrossRef]
  9. X. Chu, G. Papen, W. Pan, C. S. Gardner, J. Gelbwachs, “Fe Boltzmann temperature lidar: design, error analysis, and first results from the North and South Poles,” Appl. Opt. 41, 4400–4410 (2002). [CrossRef] [PubMed]
  10. U. von Zahn, J. Hoffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 26, 141–144 (1996). [CrossRef]
  11. R. J. States, C. S. Gardner, “Thermal structure of the mesopause region (80–105 km) at 40 °N latitude. 2. Diurnal variations,” J. Atmos. Sci. 57, 78–92 (2000). [CrossRef]
  12. C. Y. She, S. Chen, B. P. Williams, Z. Hu, D. A. Krueger, M. E. Hagan, “Tides in the mesopause region over Ft. Collins, Colorado (41 °N, 105 °W) based on lidar temperature observations covering full diurnal cycles,” J. Geophys. Res. 107, 4350, doi:10.1029/2001JD001189 (2002).
  13. W. Pan, C. S. Gardner, “Seasonal variations of the atmospheric temperature structure at South Pole,” J. Geophys. Res. 108, 4564, doi:10.1029/2002JD003217 (2003).
  14. A. Corney, Atomic and Laser Spectroscopy (Oxford U. Press, Oxford, UK, 1977).
  15. G. C. Papen, W. M. Pfenninger, D. M. Simonich, “Sensitivity analysis of Na narrowband wind-temperature lidar systems,” Appl. Opt. 34, 480–498 (1995). [CrossRef] [PubMed]
  16. G. C. Papen, C. S. Gardner, W. M. Pfenninger, “Analysis of a potassium lidar system for upper-atmosphere wind-temperature measurements,” Appl. Opt. 34, 6950–6958 (1995). [CrossRef] [PubMed]
  17. J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atmos. Solar Terr. Phys. 65, 1411–1424 (2003). [CrossRef]
  18. J. Lautenbach, J. Höffner, “Scanning iron temperature lidar for mesopause temperature observation,” Appl. Opt. 43, 4559–4563 (2004). [CrossRef] [PubMed]
  19. A. J. Gibson, L. Thomas, S. K. Bhattachacharyya, “Lidar observations of the ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature 281, 131–132 (1979). [CrossRef]
  20. K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985). [CrossRef]
  21. C. Y. She, R. E. Bills, H. Latifi, J. R. Yu, R. J. Alvarez, C. S. Gardner, “Two frequency lidar technique for mesospheric sodium temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990). [CrossRef]
  22. R. E. Bills, C. S. Gardner, S. F. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana MF radar,” J. Geophys. Res. 96, 22701–22707 (1991). [CrossRef]
  23. C. Y. She, J. R. Yu, “Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994). [CrossRef]
  24. J. A. Gelbwachs, “Iron Boltzmann factor lidar: proposed new remote sensing technique for mesospheric temperature,” Appl. Opt. 33, 7151–7156 (1994). [CrossRef] [PubMed]
  25. C. S. Gardner, G. C. Papen, X. Chu, W. Pan, “First lidar observations of middle atmosphere temperatures, Fe densities, and polar mesospheric clouds over the North and South Poles,” Geophys. Res. Lett. 28, 1199–1202 (2001). [CrossRef]
  26. C. S. Gardner, “Sodium resonance fluorescence lidar applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989). [CrossRef]
  27. J. M. C. Plane, C. S. Gardner, J. R. Yu, C. Y. She, R. R. Garcia, H. C. Pumphrey, “Mesospheric Na layer at 40 °N: modeling and observations,” J. Geophys. Res. 104, 3773–3788 (1999). [CrossRef]
  28. R. J. States, C. S. Gardner, “Structure of the mesospheric Na layer at 40 °N latitude: seasonal and diurnal variations,” J. Geophys. Res. 104, 11783–11798 (1999). [CrossRef]
  29. T. J. Kane, C. S. Gardner, “Structure and seasonal variability of the nighttime mesospheric Fe layer at mid-latitudes,” J. Geophys. Res. 98, 16875–16886 (1993). [CrossRef]
  30. S. Raizada, C. A. Tepley, “Seasonal variation of mesospheric iron layers at Arecibo: first results from low-latitudes,” Geophys. Res. Lett. 30, 1082, doi:10.1029/2002GL016537 (2003). [CrossRef]
  31. V. Eska, J. Hoffner, U. von Zahn, “Upper atmosphere potassium layer and its seasonal variations at 54 °N,” J. Geophys. Res. 103, 29207–29214 (1998). [CrossRef]
  32. J. S. Friedman, S. C. Collins, R. Delgado, P. A. Castleberg, “Mesospheric potassium layer over the Arecibo Observatory, 18.3 °N 66.75 °W,” Geophys. Res. Lett. 29, 1071, doi:10.1029/2001GL013542 (2002). [CrossRef]
  33. C. Granier, J. P. Jegou, G. Megie, “Atomic and ionic calcium in the Earth’s upper atmosphere,” J. Geophys. Res. 94, 9917–9924 (1989). [CrossRef]
  34. J. Qian, C. S. Gardner, “Simultaneous lidar measurements of mesospheric Ca, Na and temperature profiles at Urbana, IL,” J. Geophys. Res. 100, 7753–7461 (1995). [CrossRef]
  35. M. Alpers, J. Hoffner, U. von Zahn, “Upper atmosphere Ca and Ca+ at mid-latitudes: first simultaneous and common-volume lidar observations,” Geophys. Res. Lett. 23, 567–570 (1996). [CrossRef]
  36. M. Gerding, M. Alpers, U. von Zahn, R. J. Rollason, J. M. C. Plane, “Atmospheric Ca and Ca+ layers: midlatitude observations and modeling,” J. Geophys. Res. 105, 27131–27146 (2000). [CrossRef]
  37. C. S. Gardner, T. J. Kane, D. C. Senft, J. Qian, G. Papen, “Simultaneous observations of sporadic E, Na, Fe and Ca+ layers at Urbana, Illinois: three case studies,” J. Geophys. Res. 98, 16865–16873 (1993). [CrossRef]
  38. R. Beer, “Transmission through the atmosphere,” in Laser Remote Chemical Analysis, R. M. Measures, ed., Vol. 94 of Chemical Analysis (Wiley, New York, 1985), pp. 85–162.
  39. A. Mercherikunnel, C. H. Duncan, “Total and spectral solar irradiance measured at ground surface,” Appl. Opt. 21, 554–556 (1982). [CrossRef]
  40. W. K. Pratt, Laser Communication Systems (Wiley, New York, 1968).
  41. L. Delbouille, L. Neven, C. Roland, Photometric Atlas of the Solar Spectrum from 3000 to 10,000 (Institut d’Astrophysique de l’Universite de Liege, Observatoire Royal de Belgique, Brussels, Belgium1973).
  42. J. F. Grainger, J. Ring, “Anamolous Fraunhofer line profiles,” Nature 193, 762 (1962). [CrossRef]
  43. M. Conde, P. Greet, F. Jacka, “The Ring effect in the sodium D2 Fraunhofer line of day skylight over Mawson, Antarctica,” J. Geophys. Res. 97, 11561–11565 (1992). [CrossRef]
  44. C. S. Gardner, W. Yang, “Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at the Starfire Optical Range, NM,” J. Geophys. Res. 103, 16909–16927 (1998). [CrossRef]
  45. C. Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, D. W. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105 km) over Ft. Collins, CO (41 °N, 105 °W),” Geophys. Res. Lett. 27, 3289–3292 (2000). [CrossRef]
  46. J. S. Friedman, “Tropical mesopause climatology over Arecibo Observatory,” Geophys. Res. Lett. 30, doi:10.1029/2003GL016966 (2003). [CrossRef]
  47. C. Fricke-Begemann, J. Hoffner, U. von Zahn, “The potassium density and temperature structure in the mesopause region (80–105 km) at low latitude (28 °N),” Geophys. Res. Lett. 29, doi:10.1029/2002GL015578 (2002).
  48. J. Höffner, J. Lautenbach, C. Fricke-Begemann, P. Menzel, “Observation of temperature, NLC, PMSE and potassium at Svalbard, 78 °N,” presented at the 30th Annual European Meeting on Atmospheric Studies by Optical Methods, Longyearbyen, Svalbard, 13–17 August 2003.
  49. X. Chu, G. J. Nott, P. J. Espy, C. S. Gardner, J. C. Diettrich, M. A. Clilverd, M. J. Jarvis, “Lidar observations of polar mesospheric clouds at Rothera, Antarctica (67.5 °S, 68.0 °W),” Geophys. Res. Lett. 31, L02114, doi:10.1029/2003GL018638 (2004). [CrossRef]
  50. C. Fricke-Begemann, M. Alpers, J. Hoffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, 1932–1934 (2002). [CrossRef]
  51. D. L. Snyder, Random Point Processes (Wiley, New York, 1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited