OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 26 — Sep. 10, 2004
  • pp: 5006–5015

In-plane switching of cholesteric liquid crystals for visible and near-infrared applications

Haiqing Xianyu, Sadeg Faris, and Gregory P. Crawford  »View Author Affiliations

Applied Optics, Vol. 43, Issue 26, pp. 5006-5015 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (682 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have investigated the in-plane switching of cholesteric liquid crystals for reflective wavelength shifters for visible and near-infrared applications. These devices are based on the elongation of the cholesteric pitch by an electric field perpendicular to the helical axis. The transmission notch-reflection peak position can be tuned continuously to a longer wavelength (redshift) by application of an in-plane electric field. The helix is completely unwound when the electric field is higher than the cholesteric-to-nematic transition field, and the sample is transformed to a transparent state. We have investigated the electro-optic performance of in-plane switching of cholesteric samples and developed a simple phenomenological model to describe the underlying electro-optic phenomena.

© 2004 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(230.3720) Optical devices : Liquid-crystal devices
(330.6180) Vision, color, and visual optics : Spectral discrimination

Original Manuscript: December 23, 2003
Revised Manuscript: June 14, 2004
Published: September 10, 2004

Haiqing Xianyu, Sadeg Faris, and Gregory P. Crawford, "In-plane switching of cholesteric liquid crystals for visible and near-infrared applications," Appl. Opt. 43, 5006-5015 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D.-K. Yang, J. L. West, L.-C. Chien, J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994). [CrossRef]
  2. B. Taheri, A. F. Munoz, P. Palffy-Muhoray, R. J. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 73–82 (2001). [CrossRef]
  3. A. Hochbaum, Y. Jiang, L. Li, S. Vartak, S. Faris, “Cholesteric color filters: optical characteristics, light recycling, and brightness enhancement,” SID Digest 30, 1063–1065 (1999). [CrossRef]
  4. W. J. Harper, “Voltage effects in cholesteric liquid crystals,” Mol. Cryst. 1, 325–332 (1966). [CrossRef]
  5. J. R. Hansen, R. J. Schneeberger, “Liquid crystal media for electron beam recording,” IEEE Trans. Electron Dev. 15, 896–906 (1968). [CrossRef]
  6. P.-G. de Gennes, “Calcul de la distorsion d’unc structure cholesterique par un champ magnetique,” Solid State Commun. 6, 163–165 (1968). [CrossRef]
  7. R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12, 281–282 (1968). [CrossRef]
  8. R. B. Meyer, “Distortion of a cholesteric structure by a magnetic field,” Appl. Phys. Lett. 14, 208–209 (1969). [CrossRef]
  9. F. J. Kahn, “Electric-field-induced color changes and pitch dilation in cholesteric liquid crystals,” Phys. Rev. Lett. 24, 209–212 (1970). [CrossRef]
  10. D. Subacius, S.V. Shiyanovskii, P. Bos, O.D. Lavrentovich, “Electric-field controlled color effect in cholesteric liquid crystals and polymer-dispersed cholesteric liquid crystals,” Appl. Phys. Lett. 71, 3323–3325 (1997). [CrossRef]
  11. S. V. Shiyanovskii, D. Voloschenko, T. Ishikawa, O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. 358, 225–236 (2001). [CrossRef]
  12. S. Lee, L.-C. Chien, S. Sprunt, “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72, 885–887 (1998). [CrossRef]
  13. S. Kang, S. Sprunt, L.-C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76, 3516–3518 (2000). [CrossRef]
  14. T. Shimojo, “Field-effect liquid crystal displays with interdigital electrodes,” Proc. Soc. Inf. Display 14, 110–113 (1973).
  15. M. Ohta, M. Oh-e, K. Kondo, “Development of super-TFT-LCDs with in-plane switching display mode,” Asia Display 95, 707–710 (1995).
  16. M. J. Escuti, C. C. Bowley, G. P. Crawford, S. Zumer, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264–3266 (1999). [CrossRef]
  17. H. Nakamura, “A model of image display in the optimized overdrive method for motion picture quality improvements in liquid crystal devices,” Jpn. J. Appl. Phys. 40, 6435–6440 (2001). [CrossRef]
  18. H. Wakemoto, S. Asada, N. Kato, Y. Yamamoto, M. Tsukane, T. Tsurugi, K. Tsuda, Y. Takubo, “An advanced in-plane-switching mode TFT-LCD,” SID Digest 28, 929–932 (1997).
  19. S. Oka, M. Kimura, T. Akahane, “Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching,” Appl. Phys. Lett. 80, 1847–1849 (2002). [CrossRef]
  20. Z. Li, P. Desai, R. B. Akins, G. Ventouris, D. Voloschenko, “Electrically tunable color for full-color reflective displays,” in Liquid Crystal Materials, Devices, and Applications VIII, L.-C. Chien, ed., Proc. SPIE4658, 7–13 (2002). [CrossRef]
  21. H. Xianyu, G. P. Crawford, S. Faris, “In-plane switching of cholesteric liquid crystals,” Proc. Am. Soc. Inf. Display, 2, 407–410 (2002).
  22. W. D. St. John, W. J. Fritz, Z. Lu, D. K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995). [CrossRef]
  23. V. Reshetnyak, O. Shevchuk, “Operating voltage in the inplane-switching of nematic liquid crystals,” J. Mol. Liq. 92, 131–137 (2001). [CrossRef]
  24. C. D. Hoke, P. J. Bos, “Multidimensional alignment structure for the liquid crystal director field,” J. Appl. Phys. 88, 2302–2334 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited