OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 26 — Sep. 10, 2004
  • pp: 5016–5022

Effect of Dopant Composition Ratio on Nonvolatile Holographic Recording in LiNbO3:Cu:Ce Crystals

Qianmin Dong, Liren Liu, De’an Liu, Cuixia Dai, and Liyong Ren  »View Author Affiliations


Applied Optics, Vol. 43, Issue 26, pp. 5016-5022 (2004)
http://dx.doi.org/10.1364/AO.43.005016


View Full Text Article

Acrobat PDF (150 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of dopant composition ratio on nonvolatile holographic recording in LiNbO<sub>3</sub>:Cu:Ce crystals is investigated experimentally. The results show that the dopant composition ratio affects the recording sensitivity and fixed diffraction efficiency by altering the UV light absorption characteristics of the crystals during nonvolatile, holographic recording. Increasing the dopant composition ratio of Cu and Ce leads to an increase in the absorption of UV light and further to an increase in the recording sensitivity and fixed diffraction efficiency. The UV light absorption characteristics of LiNbO<sub>3</sub>:Cu:Ce crystals and their roles in nonvolatile holographic recording are theoretically analyzed. The theoretical results are consistent with those of the experiments.

© 2004 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(090.2900) Holography : Optical storage materials
(090.7330) Holography : Volume gratings
(160.2900) Materials : Optical storage materials
(210.2860) Optical data storage : Holographic and volume memories

Citation
Qianmin Dong, Liren Liu, De’an Liu, Cuixia Dai, and Liyong Ren, "Effect of Dopant Composition Ratio on Nonvolatile Holographic Recording in LiNbO3:Cu:Ce Crystals," Appl. Opt. 43, 5016-5022 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-26-5016


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
  2. I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, and J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996).
  3. M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tao, “Angle-multiplexed hologram storage in LiNbO3:Tb, Fe,” Opt. Lett. 25, 1337–1339 (2000).
  4. K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic recording in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
  5. Y. Liu, L. Liu, and C. Zhou, “Prescription for optimizing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000).
  6. G. W. Burr and D. Psaltis, “Effect of the oxidation state of LiNbO3:Fe on the diffraction efficiency of multiple holograms,” Opt. Lett. 21, 893–895 (1996).
  7. A. Adibi, K. Buse, and D. Psaltis, “The role of carrier mobility in holographic recording in LiNbO3,” Appl. Phys. B 72, 653–659 (2001).
  8. A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
  9. O. Momtahan and A. Adibi, “Global optimization of sensitivity and dynamic range for two-center holographic recording,” J. Opt. Soc. Am. B 20, 449–461 (2003).
  10. Y. Liu and L. Liu, “Theoretical investigation of nonvolatile holographic storage in doubly doped lithium niobate crystals,” J. Opt. Soc. Am. B 19, 2413–2422 (2002).
  11. A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
  12. Y. Liu, L. Liu, C. Zhou, and L. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett. 25, 908–910 (2000).
  13. D. Liu, L. Liu, C. Zhou, L. Ren, and G. Li, “Nonvolatile holograms in LiNbO3:Fe:Cu using the bleaching effect,” Appl. Opt. 41, 6809–6811 (2002).
  14. X. Yue, A. Adibi, T. Hudson, K. Buse, and D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
  15. Y. Liu, L. Liu, L. Xu, and C. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Ce:Cu crystals,” Opt. Commun. 190, 339–343 (2001).
  16. R. Orlowski and E. Krätzig, “Holographic method for determination of photoinduced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
  17. L. Ren, L. Liu, D. Liu, J. Zu, and Z. Luan, “Optimal switching from recording to fixing for high diffraction efficiency from a LiNbO3:Ce:Cu photorefractive nonvolatile hologram,” Opt. Lett. 29, 186–188 (2004).
  18. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I: Steady state,” Ferroelectrics 22, 949–960 (1979).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited