OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 26 — Sep. 10, 2004
  • pp: 5047–5059

Improvement of the self-Q-switching behavior of a Cr:LiSrAlF6 laser by use of binary diffractive optics

Nicolas Passilly, Michael Fromager, and Kamel Aït-Ameur  »View Author Affiliations

Applied Optics, Vol. 43, Issue 26, pp. 5047-5059 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (220 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It has been shown experimentally and theoretically that Q-switching behavior is possible in a flash-lamp-pumped Cr-doped LiSrAlF6 (Cr3+:LiSAF) laser that consists only of two mirrors, a laser crystal, and a diaphragm. We demonstrate that insertion into a laser of a binary diffractive optical element can speed up the dynamics of the self-Q-switched laser such that the output pulse is shortened (from 60 to 33 ns) and its energy is increased (from 36 to 54 mJ). The self-Q-switching behavior of the laser has the ability to produce a laser pulse with a duration that one can adjust continuously from 60 to 700 ns just by opening the diaphragm.

© 2004 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(140.3540) Lasers and laser optics : Lasers, Q-switched

Original Manuscript: December 2, 2003
Revised Manuscript: May 21, 2004
Published: September 10, 2004

Nicolas Passilly, Michael Fromager, and Kamel Aït-Ameur, "Improvement of the self-Q-switching behavior of a Cr:LiSrAlF6 laser by use of binary diffractive optics," Appl. Opt. 43, 5047-5059 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1999), Chap. 8. [CrossRef]
  2. B. C. Weber, A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158–165 (1996). [CrossRef]
  3. B. C. Weber, A. Hirth, “Presentation of a new and simple technique of Q-switching with a Cr:LiSAF oscillator,” Opt. Commun. 149, 301–306 (1998). [CrossRef]
  4. M. Fromager, K. Aït-Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium doped active material,” Opt. Commun. 191, 305–314 (2001). [CrossRef]
  5. D. A. Berkley, G. J. Wolga, “Transient interference studies of emission from a pulsed ruby laser,” J. Appl. Phys. 38, 3231–3241 (1967). [CrossRef]
  6. A. Flamholz, G. J. Wolga, “Transient interference studies of passively Q-switched ruby laser emission,” J. Appl. Phys. 39, 2723–2731 (1968). [CrossRef]
  7. K. Aït-Ameur, T. Kerdja, D. Louhibi, “Dynamical optical distortions in ruby lasers,” J. Phys. D. 15, 1667–1672 (1982). [CrossRef]
  8. N. Passilly, M. Fromager, Aït-Ameur, R. Moncorgé, J. L. Doualan, A. Hirth, G. Quarles, “Experimental and theoretical investigation of a rapidly nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. (to be published).
  9. O. Svelto, Principles of Lasers (Plenum, New York, 1998), Chap. 7. [CrossRef]
  10. G. Stéphan, M. Trümper, “Inhomogeneity effects in a gas laser,” Phys. Rev. A 28, 2344–2362 (1983). [CrossRef]
  11. R. Menzel, Photonics (Springer-Verlag, Berlin, 2001), Chap. 2, p. 61.
  12. K. Aït-Ameur, “Influence of the longitudinal position of an aperture inside a cavity on the transverse mode discrimination,” Appl. Opt. 32, 7366–7372 (1993). [CrossRef] [PubMed]
  13. K. Aït-Ameur, D. Louhibi, T. Kerdja, “Measurement of the pumping coefficient dependence upon flashlamp opacity in a Nd:YAG laser,” Opt. Commun. 217, 351–355 (2003). [CrossRef]
  14. A. Caprara, G. C. Reali, “Time varying M2 in Q-switched lasers,” Opt. Quantum Electron. 24, 1001–1009 (1992). [CrossRef]
  15. A. Caprara, G. C. Reali, “Time-resolved M2 of nanosecond pulses from a Q-switched variable-reflectivity-mirror Nd:YAG laser,” Opt. Lett. 17, 414–416 (1992). [CrossRef] [PubMed]
  16. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 26.
  17. J. R. Leger, D. Chen, Z. Wang, “Diffractive optical element for mode shaping of a Nd:YAG laser,” Opt. Lett. 19, 108–110 (1994). [CrossRef] [PubMed]
  18. J. R. Leger, D. Chen, G. Mowry, “Design and performance of diffractive optics for custom laser resonators,” Appl. Opt. 34, 2498–2509 (1995). [CrossRef] [PubMed]
  19. K. Ballüder, M. R. Taghizadeh, H. A. McInnes, T. H. Bett, “Diffractive optical elements for intra-cavity beam-shaping of laser modes,” J. Mod. Opt. 47, 2421–2435 (2000). [CrossRef]
  20. J. Turunen, P. Pääkkönen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47, 2467–2475 (2000).
  21. S. Makki, J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35, 1075–1085 (1999). [CrossRef]
  22. J. Bourderionnet, N. Huot, A. Brignon, J. P. Huignard, “Spatial mode control of a diode-pumped Nd:YAG laser by use of an intracavity holographic phase plate,” Opt. Lett. 25, 1579–1581 (2000). [CrossRef]
  23. U. D. Zeitner, F. Wyrowski, “High modal discrimination for laser resonators with Gaussian output beam,” J. Mod. Opt. 46, 1309–1314 (1999).
  24. A. A. Napartovitch, N. N. Elkin, V. N. Troschieva, D. V. Vysotski, J. R. Leger, “Simplified intracavity phase plates for increasing laser-mode discrimination,” Appl. Opt. 38, 3025–3029 (1999). [CrossRef]
  25. J. Cordingley, “Application of a binary diffractive optic for beam shaping in semiconductor processing by lasers,” Appl. Opt. 32, 2538–2542 (1993). [CrossRef] [PubMed]
  26. R. Bourouis, K. Aït-Ameur, H. Ladjouze, “Optimization of the Gaussian beam flattening using a phase-plate,” J. Mod. Opt. 44, 1417–1427 (1997). [CrossRef]
  27. M. Fromager, K. Aït-Ameur, “Transformation of an elliptic into a circular beam using a diffractive binary optic,” Opt. Commun. 190, 45–49 (2001). [CrossRef]
  28. K. Aït-Ameur, F. Sanchez, M. Brunel, “High transverse mode discrimination in apertured resonators using diffractive binary optics,” Opt. Commun. 184, 73–78 (2000). [CrossRef]
  29. K. Aït-Ameur, “Effects of a phase aperture on the fundamental mode of a hard-apertured cavity,” J. Mod. Opt. 49, 1157–1168 (2002). [CrossRef]
  30. A. E. Siegman, “Analysis of laser beam quality degradation caused by quartic phase aberrations,” Appl. Opt. 32, 5893–5901 (1993). [CrossRef] [PubMed]
  31. H. J. Caufield, D. Dvore, J. W. Goodman, W. T. Rhodes, “Eigenvector determination by noncoherent optical methods,” Appl. Opt. 20, 2263–2265 (1981). [CrossRef]
  32. K. Aït-Ameur, H. Ladjouze, “Fundamental mode distribution in a diaphragmed cavity,” J. Phys. D 21, 1566–1571 (1988). [CrossRef]
  33. K. Aït-Ameur, H. Ladjouze, G. Stéphan, “Diffraction effects in a resonant cavity with two nonequivalent apertures,” Appl. Opt. 31, 397–405 (1992). [CrossRef] [PubMed]
  34. S. Vicalvi, R. Borghi, M. Santarsiero, F. Gori, “Shape-invariance error for axially symmetric light beams,” IEEE J. Quantum Electron. 34, 2109–2116 (1998). [CrossRef]
  35. A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited