OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 26 — Sep. 10, 2004
  • pp: 5092–5099

Coherent Differential Absorption Lidar Measurements of CO2

Grady J. Koch, Bruce W. Barnes, Mulugeta Petros, Jeffrey Y. Beyon, Farzin Amzajerdian, Jirong Yu, Richard E. Davis, Syed Ismail, Stephanie Vay, Michael J. Kavaya, and Upendra N. Singh  »View Author Affiliations

Applied Optics, Vol. 43, Issue 26, pp. 5092-5099 (2004)

View Full Text Article

Acrobat PDF (206 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A differential absorption lidar has been built to measure CO<sub>2</sub> concentration in the atmosphere. The transmitter is a pulsed single-frequency Ho:Tm:YLF laser at a 2.05-μm wavelength. A coherent heterodyne receiver was used to achieve sensitive detection, with the additional capability for wind profiling by a Doppler technique. Signal processing includes an algorithm for power measurement of a heterodyne signal. Results show a precision of the CO<sub>2</sub> concentration measurement of 1%–2% 1ς standard deviation over column lengths ranging from 1.2 to 2.8 km by an average of 1000 pulse pairs. A preliminary assessment of instrument sensitivity was made with an 8-h-long measurement set, along with correlative measurements with an <i>in situ</i> sensor, to determine that a CO<sub>2</sub> trend could be detected.

© 2004 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3580) Lasers and laser optics : Lasers, solid-state
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar

Grady J. Koch, Bruce W. Barnes, Mulugeta Petros, Jeffrey Y. Beyon, Farzin Amzajerdian, Jirong Yu, Richard E. Davis, Syed Ismail, Stephanie Vay, Michael J. Kavaya, and Upendra N. Singh, "Coherent Differential Absorption Lidar Measurements of CO2," Appl. Opt. 43, 5092-5099 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. C. D. Keeling, “Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii,” Tellus 25, 538–551 (1976).
  2. J. Kaiser and K. Schmidt, “Coming to grips with the world’s greenhouse gases,” Science 281, 504–506 (1999).
  3. P. J. Rayner and D. M. O’Brien, “The utility of remotely sensed CO2 concentration data in surface inversion,” Geophys. Res. Lett. 28, 175–178 (2001).
  4. T. M. Taczak and D. W. Killinger, “Development of a tunable, narrow-linewidth, cw 2.066-μm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O,” Appl. Opt. 37, 8460–8476 (1998).
  5. R. T. Menzies, D. M. Tratt, M. P. Chiao, and C. R. Webster, “Laser absorption spectrometer concept for global-scale observations of atmospheric carbon dioxide,” in Proceedings of the 11th Coherent Laser Radar Conference (Amey Imagery, Malvern, UK, 2001), pp. 135–137.
  6. R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42, 6569–6577 (2003).
  7. B. R. Neff, M. E. Dobbs, M. Gypson, J. Pruitt, and W. E. Sharp, “CO2 monitoring with a field deployable NIR standoff environmental sensor,” in Lidar Remote Sensing for Environmental Monitoring IV, U. N. Singh, ed., Proc. SPIE 5154, 118–125 (2003).
  8. J. L. Bufton, T. Itabe, L. L. Strow, C. L. Korb, B. M. Gentry, and C. Y. Weng, “Frequency-doubled CO2 lidar measurement and diode laser spectroscopy of atmospheric CO2,” Appl. Opt. 22, 2592–2602 (1983).
  9. G. J. Koch, “Coherent differential absorption lidar for combined measurement of wind and trace atmospheric gases,” Ph.D. dissertation (Old Dominion University, Norfolk, Virginia, 2001).
  10. T. F. Refaat, M. N. Abedin, G. J. Koch, S. Ismail, and U. N. Singh, “2 μm detectors for atmospheric CO2 DIAL measurements,” in Digest of Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 2003), pp. 93–96.
  11. R. M. Hardesty, “Coherent DIAL measurement of range-resolved water vapor concentration,” Appl. Opt. 23, 2545–2553 (1984).
  12. S. Lehmann, H. Linne, and J. Bosenberg, “Simultaneous measurements of wind speed and water vapor with a heterodyne DIAL system,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th International Laser Radar Conference (ILRC), A. Dabas, C. Loth, and J. Pelon, eds. (Editions de l’Ecole Polytechnique, Paris, 2000), pp. 303–307.
  13. U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, and E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output energy of 600 mJ at 10 Hz,” in Advanced Solid-State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics(Optical Society of America, Washington, D.C., 1998), pp. 194–196.
  14. J. Yu, U. N. Singh, N. P. Barnes, and M. Petros, “125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser,” Opt. Lett. 23, 780–782 (1998).
  15. S. W. Henderson, E. Y. Yuen, and E. S. Fry, “Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers,” Opt. Lett. 11, 715–717 (1986).
  16. G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, and J. C. McCarthy, “Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of carbon dioxide,” Appl. Opt. 39, 3664–3669 (2000).
  17. G. J. Koch, M. Petros, J. Yu, and U. N. Singh, “Precise wavelength control of a pulsed single-frequency Ho:Tm:YLF laser,” Appl. Opt. 41, 1718–1721 (2002).
  18. R. Frehlich, S. M. Hannon, and S. W. Henderson, “Coherent Doppler lidar measurement of winds in the weak signal regime,” Appl. Opt. 36, 3491–3499 (1997).
  19. B. J. Rye and R. M. Hardesty, “Estimate optimization parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 36, 9425–9436 (1997).
  20. S. B. Idso, C. D. Idso, and R. C. Balling, “Seasonal and diurnal variations of near-surface atmospheric CO2 concentration within a residential sector of the urban CO2 dome of Phoenix, AZ, USA,” Atmos. Environ. 36, 1655–1660 (2002).
  21. USF HITRAN-PC, Version 2.51 (Ontar Corporation, North Andover, Mass., 1996).
  22. D. Belmiloud, R. Shermaul, K. M. Smith, N. F. Zobov, J. W. Brault, R. C. M. Learner, D. A. Newnham, and J. Tennyson, “New studies of the visible and near-infrared absorption by water vapor and some problems with the HITRAN database,” Geophys. Res. Lett. 27, 3703–3706 (2000).
  23. B. E. Anderson, G. L. Gregory, J. E. Collins, Jr., G. W. Sachse, T. J. Conway, and G. P. Whiting, “Airborne observations of spatial and temporal variability of tropospheric carbon dioxide,” J. Geophys. Res. 101D, 1985–1997 (1996).
  24. S. A. Vay, B. E. Anderson, T. J. Conway, G. W. Sachse, J. E. Collins, Jr., D. R. Blake, and D. J. Westberg, “Airborne observations of the tropospheric CO2 distribution and its controlling factors over the South Pacific basin,” J. Geophys. Res. 104D, 5663–5676 (1999).
  25. S. A. Vay, J.-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, and S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108D, doi:10.1029/2002JD003094 (2003).
  26. D. K. Killinger and N. Menyuk, “Effect of turbulence-induced correlation on laser remote sensing errors,” Appl. Phys. Lett. 38, 968–970 (1981).
  27. N. Menyuk, D. K. Killinger, and C. R. Menyuk, “Error reduction in laser remote sensing: combined effects of cross correlation and signal averaging,” Appl. Opt. 24, 118–131 (1985).
  28. J. Yu, U. N. Singh, J. C. Barnes, N. P. Barnes, and M. Petros, “An efficient double pulsed 2-micron laser for DIAL applications,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th International Laser Radar Conference (ILRC), A. Dabas, C. Loth, and J. Pelon, eds. (Editions de l’Ecole Polytechnique, Paris, 2000), pp. 53–55.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited