OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 26 — Sep. 10, 2004
  • pp: 5116–5125

Measurements of absolute CH concentrations by cavity ring-down spectroscopy and linear laser-induced fluorescence in laminar, counterflow partially premixed and nonpremixed flames at atmospheric pressure

Sameer V. Naik and Normand M. Laurendeau  »View Author Affiliations


Applied Optics, Vol. 43, Issue 26, pp. 5116-5125 (2004)
http://dx.doi.org/10.1364/AO.43.005116


View Full Text Article

Enhanced HTML    Acrobat PDF (194 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report quantitative, spatially resolved measurements of methylidyne concentration ([CH]) in laminar, counterflow partially premixed and nonpremixed flames at atmospheric pressure by using both cavity ring-down spectroscopy (CRDS) and linear laser-induced fluorescence (LIF) in the A-X (0, 0) band. Three partially premixed (ϕ B = 1.45, 1.6, 2.0) flames plus a single nonpremixed methane-air flame are investigated at a global strain rate of 20 s-1. These quantitative measurements are compared with predictions from an opposed-flow flame code when utilizing two GRI chemical kinetic mechanisms (versions 2.11 and 3.0). The LIF measurements of [CH] are corrected for variations in the electronic quenching rate coefficient by using predicted major species concentrations and temperatures along with quenching cross sections for CH that are available in the literature. The peak CH concentration obtained by CRDS is used to calibrate the quenching-corrected LIF measurements. Excellent agreement is obtained between CH concentration profiles measured by using the CRDS and LIF techniques. The spatial location of the CH layer is very well predicted by GRI 3.0; moreover, the measured and predicted CH concentrations are in good agreement for all the flames of this study.

© 2004 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.1030) Spectroscopy : Absorption
(300.2530) Spectroscopy : Fluorescence, laser-induced

History
Original Manuscript: October 14, 2003
Revised Manuscript: April 19, 2004
Published: September 10, 2004

Citation
Sameer V. Naik and Normand M. Laurendeau, "Measurements of absolute CH concentrations by cavity ring-down spectroscopy and linear laser-induced fluorescence in laminar, counterflow partially premixed and nonpremixed flames at atmospheric pressure," Appl. Opt. 43, 5116-5125 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-26-5116


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Luque, G. P. Smith, D. R. Crosley, “Quantitative CH determinations in low-pressure flames,” Proc. Combust. Inst. 26, 959–966 (1996).
  2. C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech, version 2.11 (1995), http://www.me.berkeley.edu/gri_mech/ .
  3. P. A. Berg, D. A. Hill, A. R. Noble, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Absolute CH concentration measurements in low-pressure methane flames: comparisons with model results,” Combust. Flame 121, 223–235 (2000). [CrossRef]
  4. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, GRI-Mech, version 3.0 (1999), http://www.me.berkeley.edu/gri_mech/ .
  5. J. T. Salmon, N. M. Laurendeau, “Calibration of laser-saturated fluorescence measurements using Rayleigh scattering,” Appl. Opt. 24, 65–73 (1985). [CrossRef] [PubMed]
  6. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]
  7. I. Derzy, V. A. Lozovsky, S. Cheskis, “Absolute CH concentration in flames measured by cavity ring-down spectroscopy,” Chem. Phys. Lett. 306, 319–324 (1999). [CrossRef]
  8. J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, J. J. Scherer, “Combined cavity ring-down absorption and laser-induced fluorescence imaging measurements of CN (B–X) and CH (B–X) in low-pressure CH4/O2/N2 and CH4/NO/O2/N2 flames,” Combust. Flame 126, 1725–1735 (2001). [CrossRef]
  9. J. W. Thoman, A. McIlroy, “Absolute CH radical concentrations in rich low-pressure methane-oxygen-argon flames via cavity ring-down spectroscopy of the A 2Δ-X2 Π transition,” J. Phys. Chem. A 104, 4953–4961 (2000). [CrossRef]
  10. J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Quasi-simultaneous detection of CH2O and CH by cavity ring-down absorption and laser-induced fluorescence in a methane/air low-pressure flame,” Appl. Phys. B 73, 731–738 (2001). [CrossRef]
  11. T. S. Norton, K. C. Smyth, “Laser-induced fluorescence of CH in a laminar CH4/air diffusion flame: Implications for diagnostic measurements and analysis of chemical rates,” Combust. Sci. Technol. 76, 1–20 (1991). [CrossRef]
  12. M. D. Smooke, Y. Xu, R. M. Zurn, P. Lin, J. H. Frank, M. B. Long, “Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames,” Proc. Combust. Inst. 24, 813–821 (1992).
  13. M. W. Renfro, A. Chaturvedy, N. M. Laurendeau, “Semi-quantitative measurements of CH concentration in atmospheric-pressure counter-flow diffusion flames using picosecond laser-induced fluorescence,” Combust. Sci. Technol. 169, 25–43 (2001). [CrossRef]
  14. X. Mercier, P. Jamette, J. F. Pauwels, P. Desgroux, “Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric diffusion flame,” Chem. Phys. Lett. 305, 334–342 (1999). [CrossRef]
  15. R. H. Klein-Douwel, J. B. Jeffries, J. Luque, G. P. Smith, D. R. Crosley, “CH and formaldehyde structures in partially premixed methane/air co-flow flames,” Combust. Sci. Technol. 167, 291–310 (2001). [CrossRef]
  16. J. Luque, R. H. Klein-Douwel, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric flames,” Appl. Phys. B 75, 779–790 (2002).
  17. C. Moreau, E. Therssen, P. Desgroux, J. F. Pauwels, A. Chapput, M. Barj, “Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure,” Appl. Phys. B 76, 597–602 (2003). [CrossRef]
  18. R. Evertsen, J. A. Van Oijen, R. T. E. Hermanns, L. P. H. De Goey, J. J. Ter Meulen, “Measurements of absolute concentrations of CH in a premixed atmospheric flat flame by cavity ring-down spectroscopy,” Combust. Flame 132, 34–42 (2003). [CrossRef]
  19. C. B. Dreyer, S. M. Spuler, M. Linne, “Calibration of laser-induced fluorescence of the OH radical by cavity ring-down spectroscopy in premixed atmospheric pressure flames,” Combust. Sci. Technol. 171, 163–190 (2001). [CrossRef]
  20. R. V. Ravikrishna, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in ethane-air and methane-air counter-flow diffusion flames,” Combust. Flame 120, 372–382 (2000). [CrossRef]
  21. R. V. Ravikrishna, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in counter-flow partially-premixed flames,” Combust. Flame 122, 474–482 (2000). [CrossRef]
  22. R. S. Barlow, A. N. Karpetis, J. H. Frank, J. Y. Chen, “Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames,” Combust. Flame 127, 2102–2118 (2001). [CrossRef]
  23. S. V. Naik, N. M. Laurendeau, “LIF measurements and chemical kinetic analysis of nitric oxide formation in high-pressure counter-flow partially premixed and nonpremixed flames,” Combust. Sci. Technol. (to be published).
  24. A. E. Lutz, R. J. Kee, J. F. Grcar, “OPPDIF: a Fortran program for computing opposed-flow diffusion flames,” Rep. SAND96–8243 (Sandia National Laboratories, Livermore, Calif., 1996).
  25. C. S. Cooper, N. M. Laurendeau, “Effect of pulsed dye laser wavelength stabilization on spectral overlap in atmospheric NO fluorescence studies,” Appl. Opt. 36, 5262–5265 (1997). [CrossRef] [PubMed]
  26. P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995). [CrossRef]
  27. J. M. Harris, F. E. Lytle, T. C. McCain, “Squirrel-cage photomultiplier base design for measurements of nanosecond fluorescence decays,” Anal. Chem. 48, 2095–2098 (1976). [CrossRef]
  28. N. A. Vora, “Flame suppression activity via laser-induced fluorescence measurements and modeling of hydroxyl concentration in opposed CH4/air diffusion flames,” M.S. thesis (School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, 2000).
  29. J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A2Δ-X2Π system,” J. Chem. Phys. 104, 2146–2155 (1996). [CrossRef]
  30. J. M. Seitzman, “Quantitative applications of fluorescence imaging in combustion,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Palo Alto, Calif., 1991).
  31. M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998). [CrossRef]
  32. M. W. Renfro, K. K. Venkatesan, N. M. Laurendeau, “Cross-sections for quenching of CH A 2Δ, v′ = 0, by N2 and H2O from 1740 to 2160 K,” Proc. Combust. Inst. 29, 2695–2702 (2002). [CrossRef]
  33. K. T. Walsh, M. B. Long, M. A. Tanoff, M. D. Smooke, “Experimental and computational study of CH, CH*, and OH* in an axisymmetric laminar diffusion flame,” Proc. Combust. Inst. 27, 615–623 (1998).
  34. R. J. Kee, J. A. Miller, G. H. Evans, G. Dixon-Lewis, “A computational model of the structure and extinction of strained, opposed-flow, premixed methane-air flames,” Proc. Combust. Inst. 22, 1479–1494 (1988).
  35. J. P. Gore, J. Lim, T. Takeno, X. L. Zhu, “A study of the effect of thermal radiation on the structure of methane-air counter-flow diffusion flames using detailed chemical kinetics,” in Proceedings of the Fifth ASME/JSME Joint Thermal Engineering Conference (American Society of Mechanical Engineers, New York, 1999), paper AJTE99–6311.
  36. R. V. Ravikrishna, S. V. Naik, C. S. Cooper, N. M. Laurendeau, “Quantitative laser-induced fluorescence measurements and modeling of nitric oxide in high-pressure (6–15-atm) counter-flow diffusion flames,” Combust. Sci. Technol. 176, 1–21 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited