OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 27 — Sep. 20, 2004
  • pp: 5173–5182

Simultaneous Two-Photon Spectral and Lifetime Fluorescence Microscopy

Damian K. Bird, Kevin W. Eliceiri, Ching-Hua Fan, and John G. White  »View Author Affiliations


Applied Optics, Vol. 43, Issue 27, pp. 5173-5182 (2004)
http://dx.doi.org/10.1364/AO.43.005173


View Full Text Article

Acrobat PDF (3601 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

When a fluorescence photon is emitted from a molecule within a living cell it carries a signature that can potentially identify the molecule and provide information on the microenvironment in which it resides, thereby providing insights into the physiology of the cell. To unambiguously identify fluorescent probes and monitor their physiological environment within living specimens by their fluorescent signatures, one must exploit as much of this information as possible. We describe the development and implementation of a combined two-photon spectral and lifetime microscope. Fluorescence lifetime images from 16 individual wavelength components of the emission spectrum can be acquired with 10-nm resolution on a pixel-by-pixel basis. The instrument provides a unique visualization of cellular structures and processes through spectrally and temporally resolved information and may ultimately find applications in live cell and tissue imaging.

© 2004 Optical Society of America

OCIS Codes
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(180.0180) Microscopy : Microscopy
(180.2520) Microscopy : Fluorescence microscopy

Citation
Damian K. Bird, Kevin W. Eliceiri, Ching-Hua Fan, and John G. White, "Simultaneous Two-Photon Spectral and Lifetime Fluorescence Microscopy," Appl. Opt. 43, 5173-5182 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-27-5173


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
  2. J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17, 763–767 (1999).
  3. V. E. Centonze and J. G. White, “Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging,” Biophys. J. 75, 2015–2024 (1998).
  4. X. F. Wang, A. Periasamy, and B. Herman, “Fluorescence lifetime imaging microscopy (FLIM): instrumentation and applications,” Crit. Rev. Anal. Chem. 23, 365–369 (1992).
  5. T. W. J. Gadella, T. M. Jovin, and R. M. Clegg, “Fluorescence lifetime imaging microscopy (FLIM): spatial resolution of microstructures on the nanosecond time scale,” Biophys. Chem. 48, 221–239 (1993).
  6. M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. (Oxford) 203, 246–257 (2001).
  7. H. C. Gerritsen and K. deGrauw, “One and two-photon confocal fluorescence lifetime imaging and its applications,” in Methods in Cellular Imaging, A. Periasamy, ed. (Oxford U. Press, New York, 2001), pp. 309–323.
  8. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1999).
  9. G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
  10. P. J. Tadrous, J. Siegel, P. M. French, S. Shousha, el-N. Lalani, and G. W. Stamp, “Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer,” J. Pathol. 199, 309–317 (2003).
  11. M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, “Multiphoton excitation spectra in biological samples,” J. Biomed. Opt. 8, 329–338 (2003).
  12. M. E. Dickinson, G. Bearman, S. Tille, R. Lansford, and S. E. Fraser, “Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy,” BioTechniques 31, 1272–1278 (2001).
  13. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, “Fluorescence lifetime imaging,” Anal. Biochem. 202, 316–330 (1992).
  14. P. I. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9, 48–52 (1999).
  15. W. Wang, J. B. Wyckoff, V. C. Frohlich, Y. Oleynikov, S. Huttelmaier, J. Zavadil, L. Cermak, E. P. Bottinger, R. H. Singer, J. G. White, J. E. Segall, and J. S. Condeelis, “Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling,” Cancer Res. 62, 6278–6288 (2002).
  16. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2, 89–117 (2000).
  17. K. W. Eliceiri, C. H. Fan, G. A. Lyons, and J. G. White, “Analysis of histology specimens using lifetime multiphoton microscopy,” J. Biomed. Opt. 8, 376–380 (2003).
  18. Q. S. Hanley, D. J. Arndt-Jovin, and T. M. Jovin, “Spectrally resolved fluorescence lifetime imaging microscopy,” Appl. Spectrosc. 56, 155–166 (2002).
  19. K. W. Eliceiri, “WiscScan: A DSP based Acquisition System for Laser Scanning Microscopes,” http://www.loci.wisc.edu/WiscScan/.
  20. D. V. O’Connor and D. Phillips, Time Correlated Single Photon Counting (Academic, London, 1984).
  21. W. Becker, A. Bergmann, C. Biskup, T. Zimmer, N. Klöcker, and K. Benndorf, “Multiwavelength TCSPC lifetime imaging,” in Multiphoton Microscopy in the Biomedical Sciences II, A. Periasamy and P. T. C. So, eds., Proc. SPIE 4620, 74–84 (2002).
  22. W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
  23. A. Schönle, M. Glatz, and S. W. Hell, “Four-dimensional multiphoton microscopy with time-correlated single-photon counting,” Appl. Opt. 39, 6306–6311 (2000).
  24. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C, 2nd ed.(Cambridge U. Press, Cambridge, UK, 1993).
  25. E. Hecht, Optics, 2nd ed.(Addison-Wesley, Reading, Mass., 1990).
  26. Hamamatsu Photonics K. K. Electron Tube Center, R5900U-L16 Series Data Sheet, http://www.hamamatsu.com (Hamamatsu Photonics, Hamamatsu City, Japan, 2003).
  27. M. Straub and S. W. Hell, “Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope,” Appl. Phys. Lett. 73, 1769–1771 (1998).
  28. Fluoresbrite Microparticles, Technical Data Sheet 431 (Polysciences Inc., Warrington, Pa., 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited