OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 27 — Sep. 20, 2004
  • pp: 5183–5192

Analysis of a Cylindrical Microlens Array with Long Focal Depth by a Rigorous Boundary-Element Method and Scalar Approximations

Jia-Sheng Ye, Bi-Zhen Dong, Ben-Yuan Gu, and Shu-Tian Liu  »View Author Affiliations


Applied Optics, Vol. 43, Issue 27, pp. 5183-5192 (2004)
http://dx.doi.org/10.1364/AO.43.005183


View Full Text Article

Acrobat PDF (534 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigated the focal characteristics of open-regional cylindrical microlens arrays with long focal depth by using a rigorous boundary-element method (BEM) and three scalar methods, i.e., a Kirchhoff and two Rayleigh-Sommerfeld diffraction integral forms. Numerical analysis clearly shows that the model cylindrical microlens arrays with different f-numbers can generate focusing beams with both long focal depth and high transverse resolution. The performance of the cylindrical microlens arrays, such as extended focal depth, relative extended focal depth, diffraction efficiency, and focal spot size, is appraised and analyzed. From a comparison of the results obtained by the rigorous BEM and by scalar approximations, we found that the results are quite similar when the f-number equals f/1.6; however, they are quite different for f/0.8. We conclude that the BEM should be adopted to analyze the performance of a microlens array system whose f-number is less than f/1.0.

© 2004 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1970) Diffraction and gratings : Diffractive optics
(220.0220) Optical design and fabrication : Optical design and fabrication

Citation
Jia-Sheng Ye, Bi-Zhen Dong, Ben-Yuan Gu, and Shu-Tian Liu, "Analysis of a Cylindrical Microlens Array with Long Focal Depth by a Rigorous Boundary-Element Method and Scalar Approximations," Appl. Opt. 43, 5183-5192 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-27-5183


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16, 523–525 (1991).
  2. J. Sochacki, S. Bará, Z. Jaroszewicz, and A. Kołodziejczyk, “Phase retardation of the uniform-intensity axilens,” Opt. Lett. 17, 7–9 (1992).
  3. L. R. Staroński, J. Sochacki, Z. Jaroszewicz, and A. Kołodziejczyk, “Lateral distribution and flow of energy in uniform-intensity axicons,” J. Opt. Soc. Am. A 9, 2091–2094 (1992).
  4. J. Sochacki, Z. Jaroszewicz, L. R. Staroński, and A. Kołodziejczyk, “Annular-aperture logarithmic axicon,” J. Opt. Soc. Am. A 10, 1765–1768 (1993).
  5. Z. Jaroszewicz, J. Sochacki, A. Kołodziejczyk, and L. R. Staroński, “Apodized annular-aperture logarithmic axicon: smoothness and uniformity of intensity distributions,” Opt. Lett. 18, 1893–1895 (1993).
  6. J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bará, “Phase retardation of the uniform intensity axilens,” Appl. Opt. 31, 5326–5330 (1992).
  7. B. Z. Dong, G. Z. Yang, and B. Y. Gu, “Iterative optimization approach for designing an axicon with long focal depth and high transverse resolution,” J. Opt. Soc. Am. A 13, 97–103 (1996).
  8. B. Z. Dong, J. Liu, B. Y. Gu, G. Z. Yang, and J. Wang, “Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution,” J. Opt. Soc. Am. A 18, 1465–1470 (2001).
  9. J. S. Ye, B. Z. Dong, B. Y. Gu, G. Z. Yang, and S. T. Liu, “Analysis of a closed-boundary axilens with long focal depth and high transverse resolution based on rigorous electromagnetic theory,” J. Opt. Soc. Am. A 19, 2030–2035 (2002).
  10. K. Hirayama, E. N. Glytsis, and T. K. Gaylord, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996).
  11. K. Hirayama, E. N. Glytsis, and T. K. Gaylord, “Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings,” J. Opt. Soc. Am. A 14, 907–914 (1997).
  12. J. M. Bendickson, E. N. Glytsis, and T. K. Gaylord, “Scalar integral diffraction methods: unification, accuracy, and comparison with a rigorous boundary element method with application to diffractive cylindrical lenses,” J. Opt. Soc. Am. A 15, 1822–1837 (1998).
  13. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968), Chaps. 3 and 4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited