OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 27 — Sep. 20, 2004
  • pp: 5222–5227

Irregular repeat-accumulate codes for volume holographic memory systems

Hossein Pishro-Nik and Faramarz Fekri  »View Author Affiliations


Applied Optics, Vol. 43, Issue 27, pp. 5222-5227 (2004)
http://dx.doi.org/10.1364/AO.43.005222


View Full Text Article

Enhanced HTML    Acrobat PDF (120 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the application of irregular repeat-accumulate (IRA) codes in volume holographic memory (VHM) systems. We introduce methodologies to design efficient IRA codes. We show that a judiciously designed IRA code for a typical VHM can be as good as the optimized irregular low-density-parity-check codes while having the additional advantage of lower encoding complexity. Moreover, we present a method to reduce the error-floor effect of the IRA codes in the VHM systems. This method explores the structure of the noise pattern in holographic memories. Finally, we explain why IRA codes are good candidates for the VHM systems.

© 2004 Optical Society of America

OCIS Codes
(200.3050) Optics in computing : Information processing
(210.2860) Optical data storage : Holographic and volume memories

History
Original Manuscript: December 29, 2003
Revised Manuscript: May 24, 2004
Manuscript Accepted: June 18, 2004
Published: September 20, 2004

Citation
Hossein Pishro-Nik and Faramarz Fekri, "Irregular repeat-accumulate codes for volume holographic memory systems," Appl. Opt. 43, 5222-5227 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-27-5222


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Chou, M. A. Neifeld, “Interleaving and error correction in volume holographic memory systems,” Appl. Opt. 37, 6951–6968 (1998). [CrossRef]
  2. M. A. Neifeld, M. McDonald, “Error correction for increasing the usable capacity photorefractive memories,” Opt. Lett. 19, 1483–1485 (1994). [CrossRef] [PubMed]
  3. B. J. Geortzen, P. A. Mitkas, “Error-correcting code for volume holographic storage of a relational database,” Opt. Lett. 20, 1655–1657 (1995). [CrossRef]
  4. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639–641 (1997). [CrossRef] [PubMed]
  5. M. A. Neifeld, W. Chou, “Information theoretic limits to the capacity of volume holographic optical memory,” Appl. Opt. 36, 514–517 (1997). [CrossRef] [PubMed]
  6. W. Chou, M. A. Neifeld, “Soft-decision array decoding for volume holographic memory systems,” J. Opt. Soc. Am. A 18, 185–194 (2001). [CrossRef]
  7. H. Pishro-Nik, N. Rahnavard, J. Ha, F. Fekri, A. Adibi, “Low-density parity-check codes for volume holographic memory systems,” Appl. Opt. 42, 861–870 (2003). [CrossRef] [PubMed]
  8. T. J. Richardson, R. L. Urbanke, “Efficient encoding of low-density parity-check codes,” IEEE Trans. Inf. Theory 47, 638–656 (2001). [CrossRef]
  9. A. Kavčić, X. Ma, M. Mitzenmacher, “Binary inersymbol interference channels: Gallager codes, density evolution and code performance bounds,” IEEE Trans. Inf. Theory 49, 1636–1652 (2003). [CrossRef]
  10. H. Jin, A. Khandekar, R. McEliece, “Irregular repat-accumulate codes,” presented at the Second International Symposium on Turbo Codes and Related Topics, Brest, France, 4–7 September 2000.
  11. R. G. Galleger, Low-density Parity-Check Codes (MIT Press, Cambridge, Mass., 1963).
  12. D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Inf. Theory 45, 399–431 (1999). [CrossRef]
  13. M. Luby, M. Mitzenmacher, M. Shokrollahi, D. Spielman, “Improved low-density parity-check codes using irregular graphs,” IEEE Trans. Inf. Theory 47, 585–598 (2001). [CrossRef]
  14. T. J. Richardson, R. L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory 47, 599–618 (2001). [CrossRef]
  15. T. J. Richardson, M. A. Shokrollahi, R. L. Urbanke, “Design of capacity-approaching irregular low-density parity-check codes,” IEEE Trans. Inf. Theory 47, 619–637 (2001). [CrossRef]
  16. H. Pishro-Nik, N. Rahnavard, F. Fekri, “Nonuniform error correction using low-density parity check codes,” in Proceedings of Fortieth Annual Allerton Conference (University of Illinois at Urbana-Champaign, Champaign, Ill., 2002), available on CD-ROM.
  17. H. Pishro-Nik, N. Rahnavard, F. Fekri, “Results on non-uniform error correction using low-density parity-check codes,” in Global Telecommunications Conference (Institute of Electrical and Electronics Engineers, New York, 2003), available on CD-ROM.
  18. M. Luby, M. Mitzenmacher, M. Shokrollahi, D. Spielman, “Efficient erasure correcting codes,” IEEE Trans. Inf. Theory 47, 569–584 (2001). [CrossRef]
  19. C. Di, T. Richardson, R. Urbanke, “Weight distributions: How deviant can you be?,” in 2001 IEEE International Symposium on Information Theory (Institute of Electrical and Electronics Engineers, New York, 2001), p. 50.
  20. A. Orlitskey, K. Viswanathan, J. Zhang, “Stopping set distribution of ldpc code ensembles,” IEEE Trans. Inf. Theory (to be published).
  21. D. J. Brady, D. Psaltis, “Control of volume holograms,” J. Opt. Soc. Am. A 9, 1167–1182 (1992). [CrossRef]
  22. J. P. Drolet, E. Chuang, G. Barbastathis, D. Psaltis, “Compact, integrated dynamic holographic memory with refreshed holograms,” Opt. Lett. 22, 552–554 (1997). [CrossRef] [PubMed]
  23. Y. Owechko, “Cascaded-grating holography for artificial neural networks,” Appl. Opt. 32, 1380–1398 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited